STRUCTURAL CALCULATIONS

Mithalia Residence 3632 90th Ave SE Mercer Island, WA - 98040

Javid Abdi, PE, SE 6810 NE 149th St. Kenmore, WA – 98028 <u>Atlas.CSE@gmail.com</u> 206-427-7233

Project:	Mithalia Residence	By:	JDA
Proj No:	210-2022	Date: 04	/25/2023

Summary

The project consists of a new single-family residence located in Mercer Island. The existing lot consists of a moderate sloping site at the east, from elevation 224' to 258', while the remaining portion of the lot remains relatively flat at an average of 266'.

The new three-story residential structure will be set into the sloped site at the west and daylight at the east. Based on the updated Geotechnical Engineering Investigation authored by GEO Group NW, the following foundation design considerations will be used: (1) Conventional shallow foundations with a maximum allowable bearing capacity of 2,000 psf with all footings being placed at least 18" below grades; (2) Passive earth pressure of 350 pcf and coefficient of friction value of 0.35, (3) Continuous foundation walls reinforced in the top and bottom to span an unsupported length of 8 feet to further aide in resisting differential movement, (4) Braced foundation walls designed to resist an equivalent fluid density of 50 pcf.

The residence will be comprised of the following: reinforced concrete strip and spread footings; concrete slab-on-grade lower floor; wood framed connector plate truss main and upper floors supported on interior and exterior wood framed load bearing walls, beams, and posts at each level; and connector plate wood trusses framing the flat roof. The lateral systems will consist of wood sheathed diaphragms and shear walls (tongue & groove plywood floor/roof/wall sheathing), and Simpson StrongTie holdowns.

See pages 2-3 for lateral design. Site seismic variables are shown on page 4: seismic areas and shearwall lengths are shown on pages 5-9; wall and wind areas on pages 10; and wind load derivation is shown on pages 11 - 17 (Kzt of 1.6 used based on Mercer Island map). Seismic and wind loads were determined using ASCE 7-16 procedures. As shown on pages 2-3, shearwalls with 10d nails spaced at 6" o.c. (SW-6), 4" o.c. (SW-4), 3" o.c. (SW-3), 2" o.c. (SW-2), 4" o.c. at each side (SW-4), 3" o.c. at each side (SW-33), and 2" o.c. at each side (SW-22) of wall are required. Shearwalls have been detailed to meet the ASD shearwall capacity values as listed in plans. LTP4 and A34 clips have an ASD capacity of 540# and 550# per clip; SDS screws have an ASD capacity of 400# per screws; 5/8" and 3/4" diameter anchor bolts have an ASD capacity of 1485# and 2039# with Doug Fir plates. The required spacing of these connectors is shown in the shearwall table in the plans. Each shearwall will have a different uplift demand, as shown on pages 2 - 3. Simpson holdowns will be used as shown in the plans, sized to ensure ASD uplift capacity. Anchorage of the HDU's into concrete were designed for worst case LRFD load when including the seismic overstrength factor. To preclude breakout, additional reinforcing hairpins are detailed to transfer shear force into new foundation walls. Note that transfer shearwalls (i.e. non-stacking shearwalls that occur atop framing) occur. Per ASCE 7, the supporting members have been designed to consider holdown forces with the 2.5 overstrength factor to ensure sufficient strength is provided...serviceability (i.e. deflection) does not consider overstrength. Strapped shearwalls were used to minimize holdowns and holdown demand where applicable...note that sheathing above and below opening is not considered when sizing shearwalls, only to distribute load across openings and determine strap forces. See pages 18 - 21 for force transfer around opening calculations. Diaphragm will use 3/4" T&G sheathing with 10d @ 6" oc at panel edges.

Gravity system was designed for 25 psf roof snow + 5 psf rain load, 15 psf roof dead load + 10 psf PV roof dead load, 40 psf floor live load, 60 psf roof deck load, and 25 psf floor dead load + 15 psf for 1-1/2" gypcrete. See pages 22-24 for framing key; and pages 25 - 91 for member designs. Uplift for each member considering 0.6D+0.6W will be resisted by straps, holdowns, or post caps at headers/beams; and H2.5a hurricane ties at rafters and trusses.

Design footings for a 2000 psf bearing pressure, increased by 1/3 (2667 psf) when considering seismic loads, and walls for 45 pcf lateral earth pressure (this is restrained lateral earth pressure from geotech, used conservatively instead of 35 pcf unrestrained earth pressure to minimize and wall deflection in foundation walls). All foundation walls will be cantilevered retaining walls braced from sliding at ground level by slab on grade. Provide minimum reinforcing in footings and walls per ACI. See pages 93-96 for retaining wall calculations, showing overturning stability and LRFD strength checks for flexure and shear.

Subject: Calculation Overview Project: Mithalia Residence Client: CenterLine

Project:		3632 90th	Ave SE (Mithalia)								
Proj No:		210-2022									
R	6.5		1005 3 10 7-10 10 0 1								
R Ω _a	2.5		ASCE 7-16 Table 12.2-1								
C _d	4										
V	46.7	Kips	= CsW ~ ASCE 7-16 (12.8-1)								
C,	0.144	Kips	= CSW ~ ASCE 7-10 (12.8-1)								
C,	0.144		0.1. (
	0.330		= Sds / (R/le) ~ ASCE 7-16 (12.8-2)								
	-		< Sd1 / T(R/le) ~ if T <tl, (12.8-3)<br="" 7-16="" asce="">< Sd1TL / T2(R/le) ~ if T>TL, ASCE 7-16 (12.8</tl,>								
	0.041		<0.044Sdsle ~ ASCE 7-16 (12.8-5)	.0-3)							
	0.01		>0.01 ~ ASCE 7-16 (12.8-5)								
	-		>0.5S1 / (R/le) ~ if S1>0.6g, ASCE 7-16 (12.8	9 P)							
w	323	Kips	20.5317 (Nie) - II 3120.0g, AGCE 710 (12.0	a-o)							
I,	1		ATC Hazard								
F,	1.81		Table 11.4-2 and Section 11.4.8 Exception								
Fa	1.2		ATC Hazard	EXCEPTION: A ground motion hazard analysis is not		Table 11	.4-2 Long	Period Site	Coefficier	nt, F _v	
S _S	1.408	2	ATC Hazard	required for structures other than seismically isolated structures		Mapped Ris	k-Targeted M Response A	lazimum Conside Acceleration Para	red Earthque meter at 1-s	ake (NCE. Period) Spectral
S ₁	0.49	g	ATC Hazard	and structures with damping systems where:	Sile						
S _{mS}		g	ATC Hazard	 Structures on Site Class E sites with S_S greater than or equal to 1.0, provided the site coefficient F_a is taken as equal to 	Class	$S_{1} \leq 0.1$	$\delta_{\gamma} = 0.2$	S1-0.3 S1	-0.4 S,	-0.5	$S_1 \ge 0.6$
S _{m1}	0.8869	8	= F,S, ~ ASCE 7-16 (11.4-1)	that of Site Class C.	АВ	0.8	0.8				0.8
S _{ds}		2	ATC Hazard	 Structures on Site Class D sites with S₁ greater than or equal to 0.2, provided the value of the seismic response 	č	1.5	1.5	1.5	1.5	15	1.4
S _{d1}	0.59126667	0	= 2/3 Sml ~ ASCE 7-16 (11.4-4)	coefficient C_s is determined by Eq. (12.8-2) for values of $T \leq 1.5T_s$ and taken as equal to 1.5 times the value	E	4.2	See	See	See 2	See	See
S _{DC}	D	8	- 25 0	computed in accordance with either Eq. (12.8-3) for $T_1 \ge$			Section 11.4.8	11.4.8 11	1.4.8 11	1.4.8	Section 11.4.8
T,	0.275	seconds	= Cthrax ~ ASCE 7-16 (12.8-7)	$T > 1.5T_s$ or Eq. (12.8-4) for $T > T_L$. 3. Structures on Site Class E sites with S_1 greater than or equal	F	See Section	See Section	Section Se	ution Se	stion 1	See Section
1				to 0.2, provided that T is less than or equal to T_{ϵ} and the	Note: *			11.4.8 11 tion for interna			
C,	0.02		ASCE 7-16 Table 12.8-2	equivalent static force procedure is used for design.	"Also, s	see requirement	nts for site	specific ground	i mutions i	in Section	11.4.8.
h_	33.00	feet									
x	0.75		ASCE 7-16 Table 12.8-2								
T ₁	6	seconds	USGS Seismic Values								
T _s	0.630	seconds	= S _{ell} /S _{ds} ASCE 7-16 (11.4-3)								
1.5Ts	0.945	seconds									
1.515	0.943	seconds									

Story	Weight	Height	Wh	C_{vx}	F xE, Kips	$\sum F_{xE}$, Kips	F xE, Kips	$\sum F_{xE}$, Kips	F _{xW} , Kips	F _{xW} , Kips
Sibiy	(Kips)	(ft)	(Kip-ft)	$(Wb/\Sigma Wb)$	$(C_m V)$	LRFD	$(C_m V)$	ASD	East ASD	North ASD
Roof	74.81	33.00	2,469	0.39	18.1	18.1	12.672	12.672	3.396	4.397
Upper	112.27	22.00	2,470	0.39	18.1	36.2	12.678	25.349	6.621	8.795
Main	136.16	10.50	1,430	0.22	10.5	46.7	7.338	32.687	6.344	7.907
ΣW	323.24									

								L	EFT-to-RIGHT		LLS								
									Upper -	to- Roof									
				SEISMI			WIND				VITY LOADING								
	%	Length (ft)		PLF	Chord F (#)	# in Wall	PLF	Chord F (#)	Wall W (#)	Snow	Dead	Live	Uplift	Comp					
N	50.0%	21.31	6,336			1,698										9	ft		
		16.25	4,218	260	2,336	1,130	70	626	1,755	563	338	0	640	4,031		4	OK	MSTC28	OK
	33.7%	7.19	2,137	297		573										4	OK		
	32.8%	7.00	2,081	297		558										4	OK		
	20.7%	4.42	1,313	297	2,676	352	80	717	477	563	338	0	2,215	3,531		4	OK	MSTC40	OK
	12.7%	2.71	805	297	2,676	216	80	717	293	563	338	0	2,393	3,422		4	OK	MSTC40	OK
s	50.0%	7.42	6.336			1.698										9	ft		
5	50.0% 100.0%	7.42	6,336	854	7,688	1,698	229	2.060	801	563	338	0	6.914	8,613		9 44	π OK	(2)MSTC52	ок
	100.0%	7.42	0,330	604	7,000	1,090	229	2,060	801	503	338	U	0,914	8,013		44	UK	(2)MS1052	UK
									Main -t	o- Upper									
				SEISMI	с		WIND				VITY LOADING	G (plf)							
	%			PLF	Chord F (#)	# in Wall	PLF	Chord F (#)	Wall W (#)	Snow	Dead	Live	Uplift	Comp	Anchorage				
N	39.3%	22.50	11,317			4,300										10	ft		
1079	100.0%	22.71	9,096	401	4,005	3,456	152	1,522	2,725	0	0	0	3,367	5,713	13,335	3	OK	MSTC52	OK
	22.2%	5.00	2,515	503		955	191									3	OK		
	17.0%	3.83	1,928	503		733	191									3	OK		
	17.0%	3.83	1,928	503		733	191									3	OK		
	24.1%	5.42	2,725	503		1,035	191									3	OK		
	19.6%	4.42	2,222	503	5,030	844	191	1,911	530	0	0	0	4,906	5,362	17,775	3	OK	MSTC66	OK
м	43.9%	31.45	5.563			2.906										10	ft		
1205	43.9%	5.67	1.002	177	1,769	524	92	924	680	0	0	0	1.610	2,195	6,076	6	OK	MSTC40	ОК
1205	51.4%	16.17	2,860	177	1,769	1.494	92	924	1.940	0	0	0	1,315	2,195	5,627	6	OK	MSTC40 MSTC40	OK
	30.6%	9.61	1,701	177	1,769	888	92	924	1,540	0	0	0	1,315	2,985	5,907	6	OK	MSTC40 MSTC40	OK
	30.0 %	9.01	1,701	1//	1,709	000	92	924	1,134	0	0	0	1,499	2,492	5,907	0	UK	M31C40	UK
S	16.8%	27.08	8,469			2,812										10	ft		
462	100.0%	38.17	8,469	222	2,219	2,812	74	737	4,580	0	0	0	1,146	5,089	6,294	4	OK	MSTC28	OK
	12.3%	3.33	1,042	313		346	104									4	OK		
	22.5%	6.08	1,902	313		632	104									4	OK		
	14.2%	3.83	1,199	313		398	104									4	OK		
	51.1%	13.83	4,326	313		1,436	104									4	OK		
									Lower	-to- Main									
				SEISMI	с		WIND		LOwer			G (plf)							
	%	Length (ft)	# in Wall	PLF	Chord F (#)	# in Wall	PLF	Chord F (#)	Wall W (#)	Snow	Dead	Live	Uplift	Comp	Anchorage				
N	50.0%	34.63	14,986			7,472									-	10	ft		
1165	63.1%	21.83	9,450	433	4,328	4,711	216	2,158	2,620	0	0	0	3,714	5,970	14,525	4	OK	HDU4	OK
	18.3%	6.33	2,741	433	4,328	1,367	216	2,158	760	0	0	0	4,150	4,804	15,187	4	OK	HDU4	OK
	18.7%	6.46	2,795	433	4,328	1,394	216	2,158	775	0	0	0	4,147	4,814	15,182	4	OK	HDU4	OK
M 1333	50.0% 69.4%	43.29	9,232	040	0.400	6,078	4.40	4 404	0.005	0	0		4 000	4.000	0.000	10	ft	UDUO	OK
1333		30.04	6,407	213	2,133	4,217	140	1,404	3,605	0	0	0	1,288	4,392	6,333	6	OK	HDU2	OK
	30.6%	13.25	2,826	213	2,133	1,860	140	1,404	1,590	0	0	0	1,760	3,129	7,050	6	OK	HDU2	OK
s	50.0%	32.04	12,138			3.518										10	ft		
614	50.0%	16.42	6,219	379	3,788	1,803	110	1.098	1.970	0	0	0	3.327	5.023	12.827	4	OK	HDU4	ок
0/4	23.9%	7.67	2,904	379	3,788	842	110	1,098	920	0	0	0	3,573	4,365	13,201	4	OK	HDU4	OK
	23.9%	3.98	2,904	379	3,788	642 437	110	1,098	478	0	0	0	3,676	4,087	13,359	4	OK	HDU4	OK
	12.4%	3.98	1,507	379	3,788	437	110	1,098	478	0	0	0	3,676	4,087	13,359	4	OK	HDU4 HDU4	OK
	12.470	3.90	1,007	319	3,700	431	110	1,080	4/0	U	U	U	3,070	4,007	13,339	4	UN	HU04	UN

									JP-to-DOWN R	UNNING WAL	LS								
									Upper -	to- Roof									
				SEISMI	С		WIND			GRA	ITY LOADING	i (plf)							
	%	Length (ft)	# in Wall	PLF	Chord F (#)	# in Wall	PLF	Chord F (#)	Wall W (#)	Snow	Dead	Live	Uplift	Comp					
W	50.0%	14.83	6,336	427		2,199	148									9	ft		
		16.83	6,336	376	3,387	2,199	131	1,176	1,818	0	0	0	2,962	4,527		4	OK	MSTC52	OK
	50.0%	7.42	3,168	427		1,099	148									4	OK		
	50.0%	7.42	3,168	427		1,099	148									4	OK		
E	50.0%	6.33	6,336	1,000		2,199	347									9	ft		
	100.0%	6.33	6,336	1,000	9,004	2,199	347	3,124	684	0	0	0	8,843	9,432		33	OK	HDU11	OK
					-				Main -to	o- Upper									
			# in Wall	SEISMI	C Chord F (#)		WIND PLF				ITY LOADING		Uplift						
w	% 24.7%	Length (ft) 13.33	# in wall 9.464	PLF	Chord F (#)	# in Wall 4,369	PLF	Chord F (#)	Wall W (#)	Snow	Dead	Live	Uplift	Comp	Anchorage	10	ft		
677	24.7%	3.00	2,129	710	7.098	983	328	3.276	360	0	0	0	7.013	7,323		44	ŐK	(2)MSTC52	OK
0//	22.5%	3.00	2,129	710	7,098	983	328	3,276	360	0	0	0	7,013	7,323		44	OK	(2)MSTC52 (2)MSTC52	OK
		3.00			7,098			3,276	413	0	0		7,013	7,323			OK	(2)MSTC52 (2)MSTC52	OF
	25.8%		2,440	710		1,126	328			0	0	0				44		(2)MSTC52 (2)MSTC52	
	29.2%	3.90	2,765	710	7,098	1,276	328	3,276	468	0	0	0	6,988	7,391		44	OK	(2)MS1C52	O
M1	42.4%	20.42	5.378			3.731										10	ft		
1164	79.9%	16.31	4.297	263	2.634	3,490	214	2,140	1.958	0	0	0	2,175	3.861		4	OK	MSTC40	OF
	20.1%	4.10	1,081	263	2,634	878	214	2,140	493	0	0	ő	2.519	2,943		4	OK	MSTC40	OF
			.,		_,			-,		-	-	-	2,010	2,010					-
E	32.9%	8.63	10.508	1.218		5.093	590									10	ft		
903	100.0%	8.63	10,508	1,218	12,183	5,093	590	5,905	1,035	0	0	0	11,941	12,832		22	OK	HDU14	Oł
				SEISMI	<u>^</u>		WIND		Lower -	to- Main	/ITY LOADING	(-16)							
	%	Length (ft)	# in Wall	PLF	Chord F (#)	# in Wall	PLF	Chord F (#)	Wall W (#)	Snow	Dead	Live	Uplift	Comp	Anchorage				
W	15.7%	38.67	10.617			5.611		01101011 (#)	(<i>u</i>)	U IIUI	Doud	2.00	opint	oomp	Anonorage	10	ft		
441	62.1%	24.00	6.590	275	2,746	3,483	145	1,451	2.880	0	0	0	2.071	4,551		6	OK	HDU2	OK
	61.1%	14.67	6.488	442	4,424	3,429	234	2.338	1 760	0	0	0	4.011	5.527		4	OK	HDU5	OF
			.,		,	.,		,	,		-	-		.,					-
M1	43.8%	11.96	8.591			7.192										10	ft		
1229	100.0%	11.96	8.591	718	7,184	7,192	601	6,015	1,435	0	0	0	6,848	8,083		2	OK	HDU8	Oł
			-,			.,													
Е	40.5%	17.33	13.480			8.296										10	ft		
	61.1%	10.58	8.231	778	7,777	5.065	479	4,786	1,270	0	0	0	7.479	8,573		44	OK	HDU8	OF
1137																			

A This is a beta release of the new ATC Hazards by Location website. Please contact us with feedback.

1 The ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.

ATC Hazards by Location

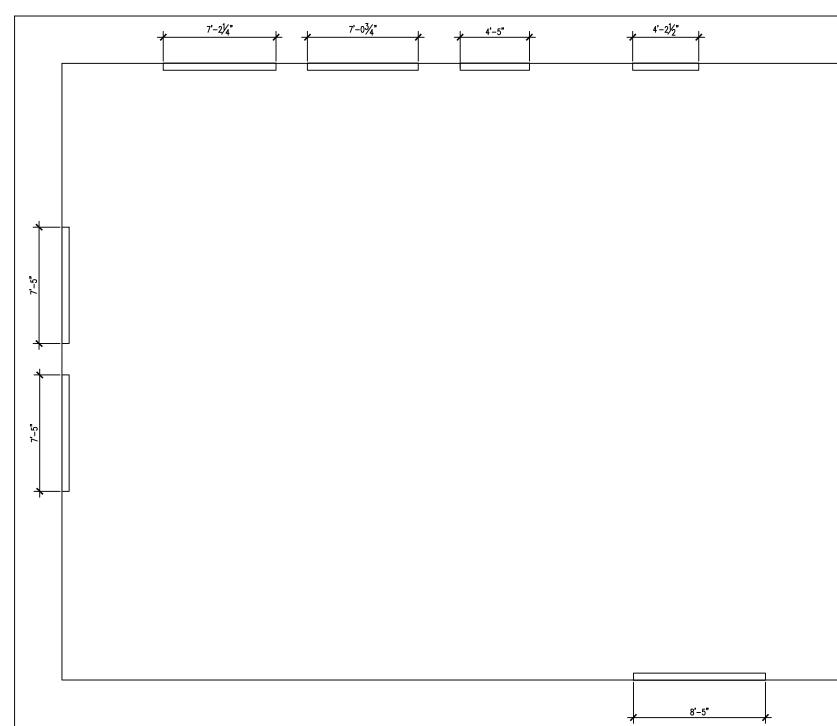
Search Information

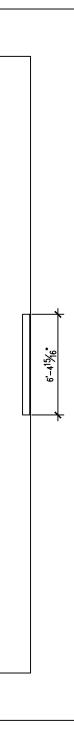
Address:	3632 90th Ave SE
Coordinates:	47.5772184, -122.2181489
Elevation:	263 ft
Timestamp:	2023-04-25T19:12:20.879Z
Hazard Type:	Seismic
Reference Document:	ASCE7-16
Risk Category:	П
Site Class:	D

Basic Parameters

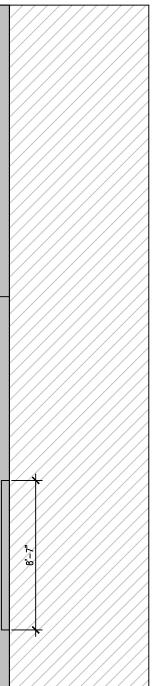
Name	Value	Description
SS	1.403	MCE _R ground motion (period=0.2s)
S ₁	0.488	MCE _R ground motion (period=1.0s)
S _{MS}	1.403	Site-modified spectral acceleration value
S _{M1}	* null	Site-modified spectral acceleration value
S _{DS}	0.935	Numeric seismic design value at 0.2s SA
S _{D1}	* null	Numeric seismic design value at 1.0s SA

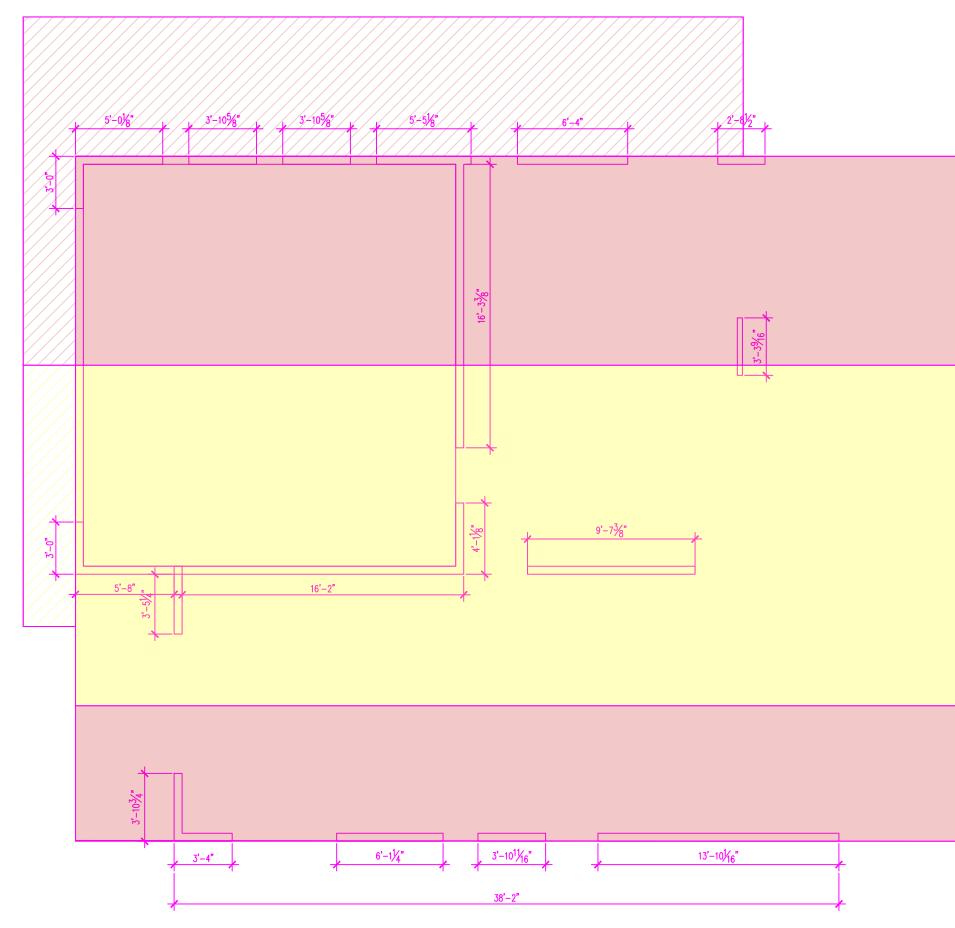
* See Section 11.4.8

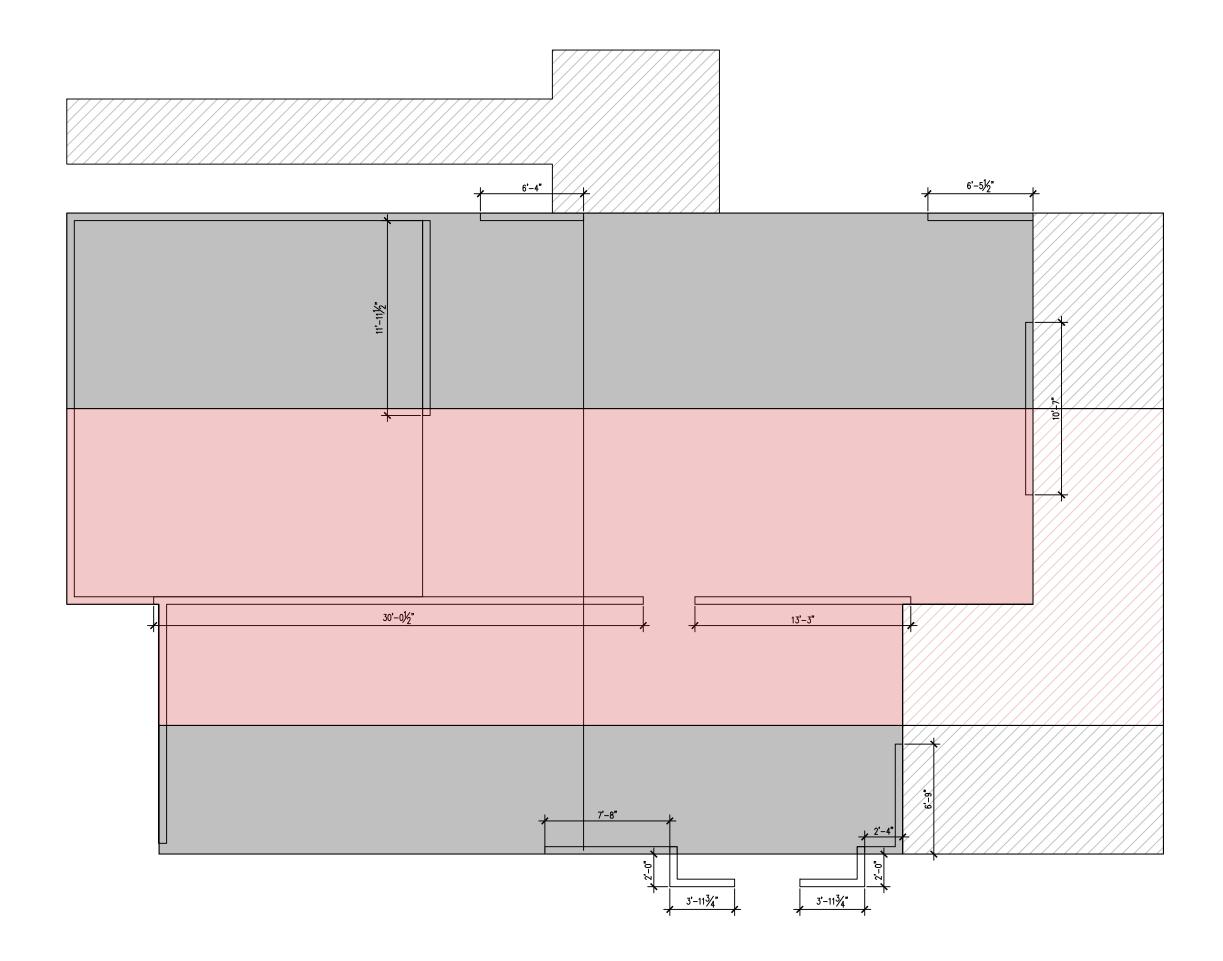

Additional Information

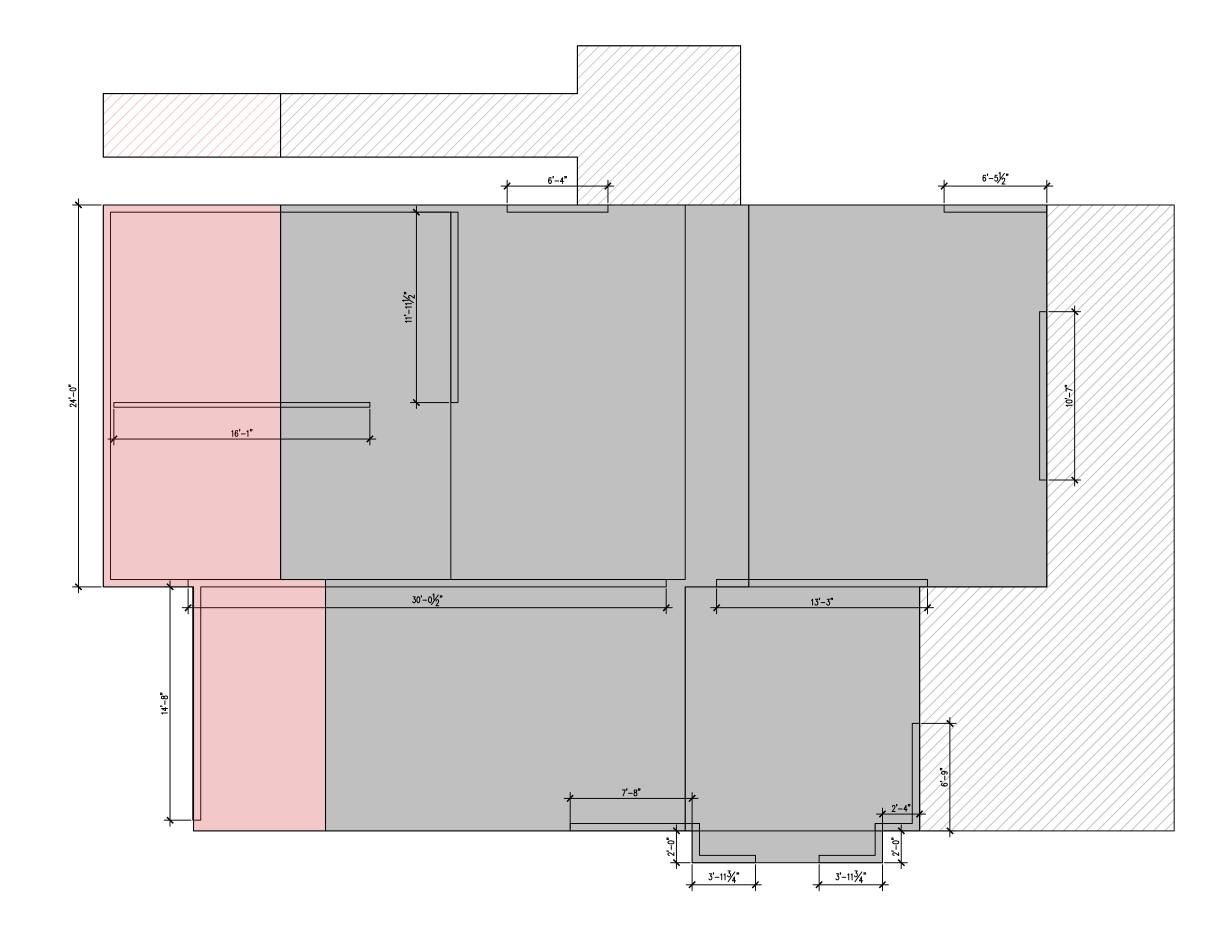

Name	Value	Description
SDC	* null	Seismic design category
Fa	1	Site amplification factor at 0.2s
Fv	* null	Site amplification factor at 1.0s
CRS	0.903	Coefficient of risk (0.2s)
CR ₁	0.897	Coefficient of risk (1.0s)
PGA	0.6	MCE _G peak ground acceleration
F _{PGA}	1.1	Site amplification factor at PGA
PGA _M	0.66	Site modified peak ground acceleration
TL	6	Long-period transition period (s)
SsRT	1.403	Probabilistic risk-targeted ground motion (0.2s)
SsUH	1.554	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	3.533	Factored deterministic acceleration value (0.2s)
S1RT	0.488	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.544	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.42	Factored deterministic acceleration value (1.0s)
PGAd	1.208	Factored deterministic acceleration value (PGA)

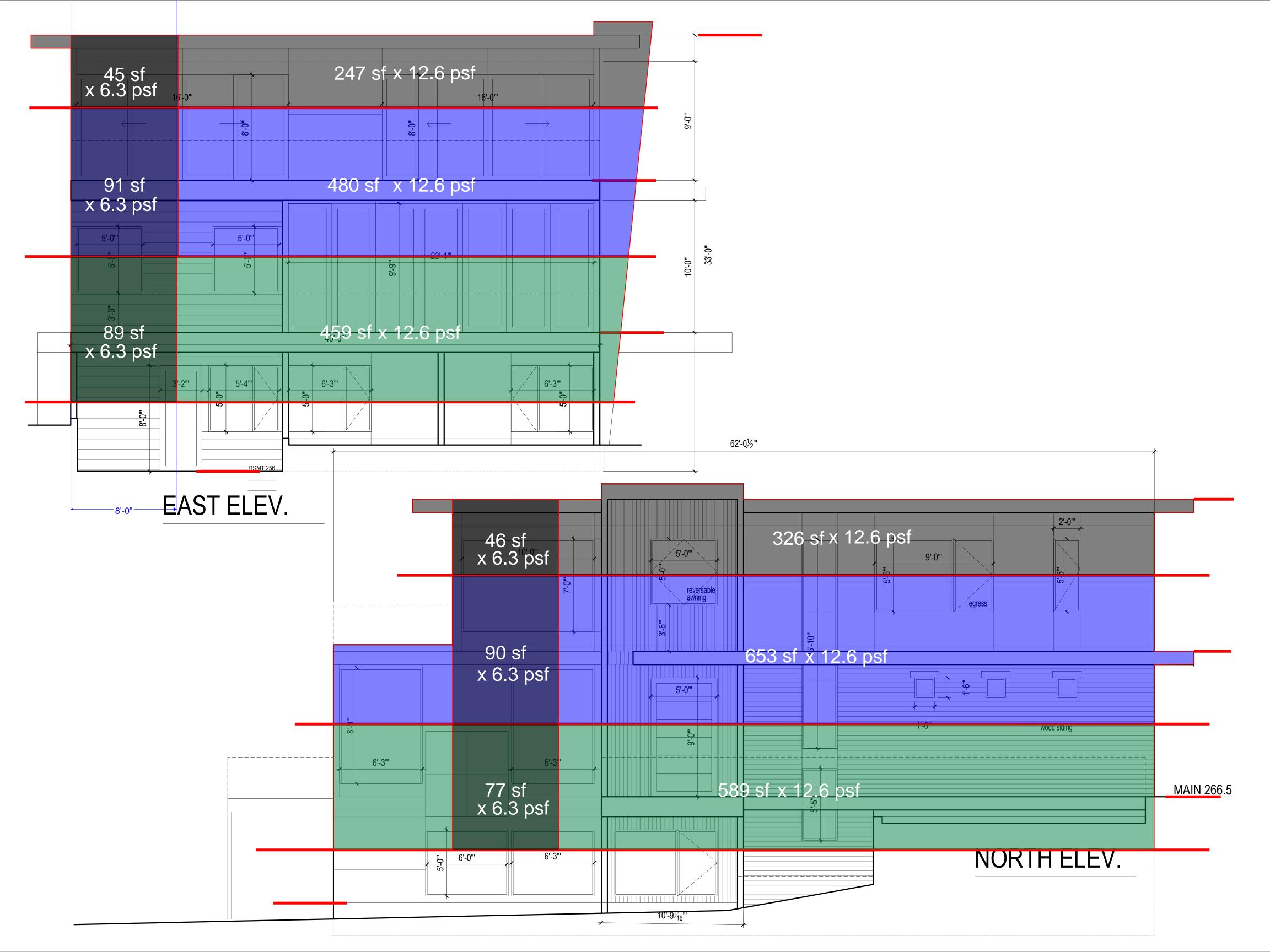
* See Section 11.4.8


The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.


Please note that the ATC Hazards by Location website will not be updated to support ASCE 7-22. Find out why.







6810 NE 149th St Kenmore, WA 206-427-7233 JOB TITLE 3632 90th Ave SE (Mithalia)

ЈОВ NO . 210-2022	SHEET NO.	
CALCULATED BY JDA	DATE	7/16/22
CHECKED BY	DATE	

www.struware.com

Code Search

Code: ASCE 7 - 10

Occupancy:

Occupancy Group = R Residential

Risk Category & Importance Factors:

Risk Category =	II	
Wind factor =	1.00	use 0.60 NOTE: Output will be nominal wind pressures
Snow factor =	1.00	
Seismic factor =	1.00	

Type of Construction:

Fire Rating:

Roof =	0.0 hr
Floor =	0.0 hr

Building Geometry:

Roof angle (θ)	0.00 / 12	0.0 deg
Building length (L)	62.0 ft	
Least width (B)	40.0 ft	
Mean Roof Ht (h)	33.0 ft	
Parapet ht above grd	0.0 ft	
Minimum parapet ht	0.0 ft	

Live Loads:

<u>Roof</u>	0 to 200 sf:	20 psf	use 25.0 psf
	200 to 600 sf:	25 psf	
	over 600 sf:	25 psf	

Floor:

Typical Floor		40 psf
Partitions		N/A
Partitions	N/A	
Partitions		N/A
Partitions	N/A	

6810 NE 149th St Kenmore, WA 206-427-7233

JOB TITLE 3632 90th Ave SE (Mithalia)

JOB NO. 210-2022	SHEET NO.	
CALCULATED BY JDA	DATE	7/16/22
CHECKED BY	DATE	

Wind Loads : Ultimate Wind Speed Nominal Wind Speed Risk Category Exposure Category Enclosure Classif. Internal pressure Directionality (Kd) Kh case 1 Kh case 2	ASCE 7- 10 110 mph 85.2 mph II B Enclosed Building +/-0.18 0.85 0.720 0.720			
Type of roof <u>Topographic Factor (F</u> Topography	Gable (<u>zt)</u> 2D Escarpment			$Z = \begin{array}{c} & & & & \\ \hline \\ \hline$
Hill Height (H) Half Hill Length (Lh) Actual H/Lh =	0.0 ft 39.4 ft 0.00		H< 60ft;exp B ∴ Kzt=1.0	
Use H/Lh = Modified Lh =	0.00 39.4 ft			ESCARPMENT
From top of crest: x = Bldg up/down wind?	0.0 ft upwind			
H/Lh= 0.00	K ₁ =	0.000		Speed-up
x/Lh = 0.00	K ₂ =	1.000		V(Z) x(upwind) x(downwind)
z/Lh = 0.84	K ₃ =	0.123		
At Mean Roof Ht: Kzt =	(1+K ₁ K ₂ K ₃)^2 =	1.00	use 1.60	2D RIDGE or 3D AXISYMMETRICAL HILL

<u>Gust Effe</u>	ct Factor	Flexible structure if natural frequency < 1 Hz (T > 1 second).
h =	33.0 ft	However, if building $h/B < 4$ then probably rigid structure (rule of thumb).
B =	40.0 ft	h/B = 0.83 Rigid structure
/z (0.6h) =	30.0 ft	
		G = 0.85 Using rigid structure default
Rigic	Structure	Flexible or Dynamically Sensitive Structure
ē =	0.33	Natural Frequency $(\eta_1) = 0.0 \text{ Hz}$
ł =	320 ft	Damping ratio (β) = 0
z _{min} =	30 ft	/b = 0.45
с =	0.30	/α = 0.25
g _Q , g _v =	3.4	Vz = 70.9
$L_z =$	310.0 ft	$N_1 = 0.00$
Q =	0.89	R _n = 0.000

$L_z =$	310.0 ft	N ₁ =	0.00
Q =	0.89	R _n =	0.000
I _z =	0.30	R _h =	28.282
G =	0.86 use G = 0.85	R _B =	28.282
		R _L =	28.282

33.0 ft h =

0.000

0.000

0.000

η =

η =

η =

0.000

JOB TITLE 3632 90th Ave SE (Mithalia)

		6810 NE 149th St
210-2022 SHEET NO.	JOB NO. 210-2022	Kenmore, WA
JDA DATE 7/16/22	CALCULATED BY JDA	206-427-7233
DATE	CHECKED BY	

Test for Enclosed Building: A building that does not qualify as open or partially enclosed.

Test for Open Building:

All walls are at least 80% open. As ≥ 0.8 Ag

Test for Partially Enclosed Building:

	Input			Test	
Ao	0.0	sf	Ao ≥ 1.1Aoi	YES]
Ag Aoi	0.0	sf	Ao > 4' or 0.01Ag	NO	
Aoi	0.0	sf	Aoi / Agi ≤ 0.20	NO	Building is NOT
Agi	0.0	sf	-		Partially Enclosed

Conditions to qualify as Partially Enclosed Building. Must satisfy all of the following:

Ao ≥ 1.1Aoi

Ao > smaller of 4' or 0.01 Ag Aoi / Agi \leq 0.20

Where:

Ao = the total area of openings in a wall that receives positive external pressure.

Ag = the gross area of that wall in which Ao is identified.

Aoi = the sum of the areas of openings in the building envelope (walls and roof) not including Ao.

Agi = the sum of the gross surface areas of the building envelope (walls and roof) not including Ag.

Reduction Factor for large volume partially enclosed buildings (Ri) :

If the partially enclosed building contains a single room that is unpartitioned, the internal pressure coefficient may be multiplied by the reduction factor Ri.

Total area of all wall & roof openings (Aog):		0 sf
Unpartitioned internal volume (Vi):		0 cf
	Ri =	1.00

Altitude adjustment to constant 0.00256 (caution - see code) :

Altitude =	0 feet	Average Air Density =	0.0765 lbm/ft ³
Constant =	0.00256		

JOB TITLE 3632 90th Ave SE (Mithalia)

6810 NE 149th St		
Kenmore, WA	JOB NO. 210-2022	SHEET NO.
206-427-7233	CALCULATED BY JDA	DATE 7/16/22
	CHECKED BY	DATE

Wind Loads - MWFRS h≤60' (Low-rise Buildings) Enclosed/partially enclosed only

Kz = Kh (case 1) =	0.72
Base pressure (qh) =	18.2 psf
GCpi =	+/-0.18

Edge Strip (a) =	4.0 ft
End Zone (2a) =	8.0 ft
Zone 2 length =	20.0 ft

Wind Pressure Coefficients

	C	ASE A			CASE B	
		θ = 0 deg				
Surface	GCpf	w/-GCpi	w/+GCpi	GCpf	w/-GCpi	w/+GCpi
1	0.40	0.58	0.22	-0.45	-0.27	-0.63
2	-0.69	-0.51	-0.87	-0.69	-0.51	-0.87
3	-0.37	-0.19	-0.55	-0.37	-0.19	-0.55
4	-0.29	-0.11	-0.47	-0.45	-0.27	-0.63
5				0.40	0.58	0.22
6				-0.29	-0.11	-0.47
1E	0.61	0.79	0.43	-0.48	-0.30	-0.66
2E	-1.07	-0.89	-1.25	-1.07	-0.89	-1.25
3E	-0.53	-0.35	-0.71	-0.53	-0.35	-0.71
4E	-0.43	-0.25	-0.61	-0.48	-0.30	-0.66
5E				0.61	0.79	0.43
6E				-0.43	-0.25	-0.61

Nominal Wind Surface Pressures (psf)

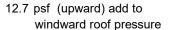
1	10.6 4.0	-4.9	-11.5
2	-9.3 -15.8	-9.3	-15.8
3	-3.5 -10.0	-3.5	-10.0
4	-2.0 -8.6	-4.9	-11.5
5		10.6	4.0
6		-2.0	-8.6
1E	14.4 7.8	-5.5	-12.0
2E	-16.2 -22.7	-16.2	-22.7
3E	-6.4 -12.9	-6.4	-12.9
4E	-4.5 -11.1	-5.5	-12.0
2E 3E 4E 5E 6E		14.4	7.8
6E		-4.5	-11.1

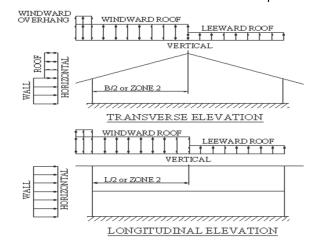
Parapet

Windward parapet = Leeward parapet = 0.0 psf (GCpn = +1.5)0.0 psf (GCpn = -1.0)

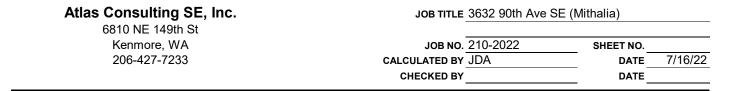
Horizontal MWFRS Simple Diaphragm Pressures (psf)

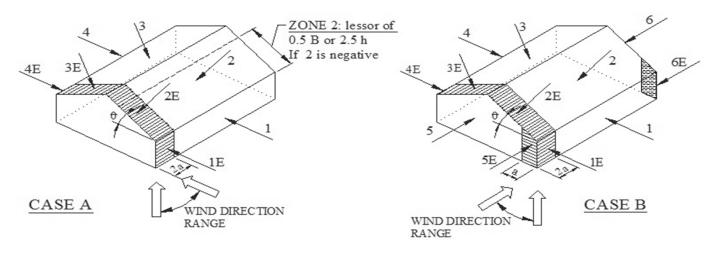
Transverse o	lirection	(normal to L)
Interior Zone:	Wall	12.6 psf
	Roof	-5.8 psf **
End Zone:	Wall	18.9 psf
	Roof	-9.8 psf **


Interior Zone:	Wall	12.6 psf
End Zone:	Wall	18.9 psf


** NOTE: Total horiz force shall not be less than that determined by neglecting roof forces (except for MWFRS moment frames).

The code requires the MWFRS be designed for a min ultimate force of 16 psf multiplied by the wall area plus an 8 psf force applied to the vertical projection of the roof.


Windward roof


overhangs =

Location of MWFRS Wind Pressure Zones

NOTE: Torsional loads are 25% of zones 1 - 6. See code for loading diagram.

ASCE 7 -99 and ASCE 7-10 (& later)

6810 NE 149th St Kenmore, WA 206-427-7233

JOB NO. 210-2022 SHEET NO. CALCULATED BY JDA DATE 7/16/22 CHECKED BY DATE

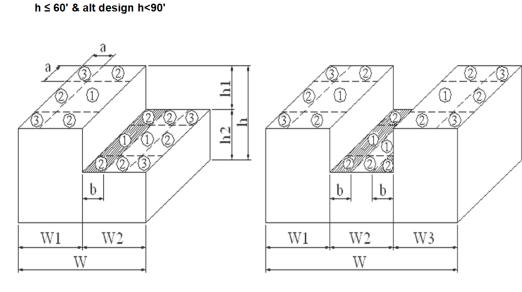
Nominal Wind Pressures

Wind Loads - Components & Cladding : h <= 60'

Kh (case 1) =	0.72	h =	33.0 ft
Base pressure (qh) =	18.2 psf	a =	4.0 ft
Minimum parapet ht =	0.0 ft	GCpi =	+/-0.18
Roof Angle (θ) =	0.0 deg		
Type of roof = G	able		

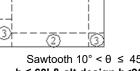
Roof	GCp +/- GCpi			Surfac	ce Pressure	User input		
Area	10 sf	50 sf	100 sf	10 sf	50 sf	100 sf	10 sf	147 sf
Negative Zone 1	-1.18	-1.11	-1.08	-21.5	-20.2	-19.7	-21.5	-19.7
Negative Zone 2	-1.98	-1.49	-1.28	-36.0	-27.1	-23.3	-36.0	-23.3
Negative Zone 3	-2.98	-1.79	-1.28	-54.2	-32.6	-23.3	-54.2	-23.3
Positive All Zones	0.48	0.41	0.38	10.0	10.0	10.0	10.0	10.0
Overhang Zone 1&2	-1.70	-1.63	-1.60	-30.9	-29.7	-29.1	-30.9	-26.9
Overhang Zone 3	-2.80	-1.40	-0.80	-51.0	-25.5	-14.6	-51.0	-14.6

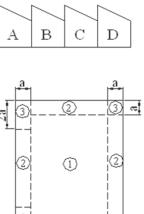
Overhang pressures in the table above assume an internal pressure coefficient (Gcpi) of 0.0 Overhang soffit pressure equals adjacent wall pressure reduced by internal pressure of 3.3 psf

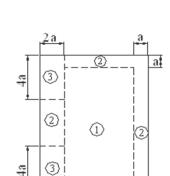

<u>Parapet</u>					
qp = 0.0 psf		Surfa	ce Pressure	e (psf)	User input
	Solid Parapet Pressure	10 sf	100 sf	500 sf	40 sf
CASE A = pressure towards building (pos)	CASE A : Interior zone:	0.0	0.0	0.0	0.0
CASE B = pressure away from bldg (neg)	Corner zone:	0.0	0.0	0.0	0.0
	CASE B : Interior zone:	0.0	0.0	0.0	0.0
	Corner zone:	0.0	0.0	0.0	0.0

Walls	GCp +/- GCpi			Surfa	ce Pressure	User input		
Area	10 sf	100 sf	500 sf	10 sf	100 sf	500 sf	10 sf	91 sf
Negative Zone 4	-1.17	-1.01	-0.90	-21.3	-18.4	-16.4	-21.3	-18.5
Negative Zone 5	-1.44	-1.12	-0.90	-26.2	-20.4	-16.4	-26.2	-20.7
Positive Zone 4 & 5	1.08	0.92	0.81	19.7	16.8	14.7	19.7	16.9

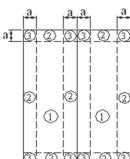
Note: GCp reduced by 10% due to roof angle <= 10 deg.

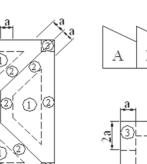

Stepped roofs $\theta \leq 3^{\circ}$ h ≤ 60' & alt design h<90'


1

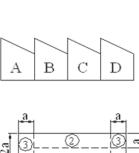


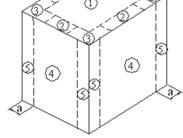
h ≤ 60' & alt design h<90'


Sawtooth $10^{\circ} < \theta \le 45^{\circ}$



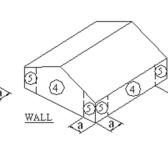
Monoslope roofs $10^\circ < \theta \le 30^\circ$

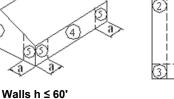



Hip $7^\circ < \theta \le 27^\circ$

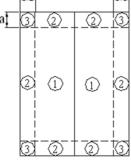
Monoslope roofs

h ≤ 60' & alt design h<90'

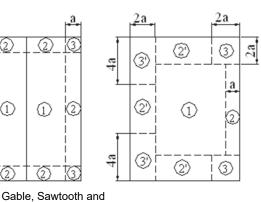

 $3^\circ < \theta \le 10^\circ$


Roofs w/ $\theta \le 10^{\circ}$

and all walls


h > 60'

& alt design h<90'


a

Multispan Gable $\theta \leq 7$ degrees &

h ≤ 60' & alt design h<90'

Monoslope ≤ 3 degrees

Location of C&C Wind Pressure Zones

Atlas Consulting SE, Inc. 6810 NE 149th St

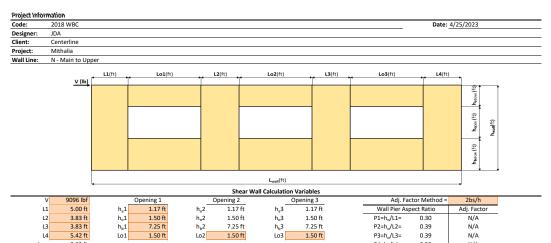
Kenmore, WA

206-427-7233

JOB TITLE 3632 90th Ave SE (Mithalia)

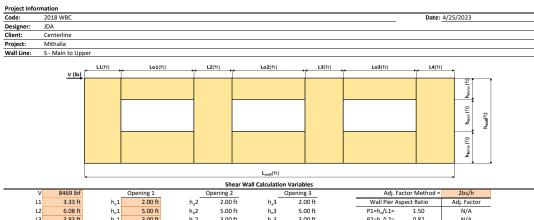
ЈОВ NO. 210-2022 SHEET NO. CALCULATED BY JDA DATE CHECKED BY DATE

Nominal Wind Pressures


7/16/22

de: signer: ent: ject: ill Line:	2018 IBC					
ent: oject:				Date: 4	4/25/2023	
ject:	JDA					
	CenterLine					
ill Line:	Mithalia					
	N - Upper to Roof					
		L1(ft) L01(ft)	L2(ft)			
	V (Ib)			<u> </u>		
			hahmwel(ft)	T T		
				T I		
			(U)	E		
			hannen (ff)	h _{wall} (ft)		
				* -		
			E E			
			Herow(ft)			
				↓ ↓		
		L _{wall} (ft	`			
	۹-	Shear Wall Calcu	•			
	V 4218 lbf	Opening 1	Adj. Factor Metho	od = 2bs/h		
	L1 7.19 ft	h _a 2.00 ft	Wall Pier Aspect Ratio			
	L2 7.00 ft	h _o 6.00 ft	P1=h _o /L1= 0.83	N/A		
	h _{wall} 10.00 ft	h _b 2.00 ft	P2=h _o /L2= 0.86	N/A		
	L _{wall} 16.19 ft	Lo1 2.00 ft		1 .		
	1. Hold-down forces: H = Vh _{wall} /L _{wall}	2605 lbf	6. Unit shear beside ope			
				1 = (V/L)(L1+T1)/L1 =	297 plf	
	2. Unit shear above + below opening	(h)		2 = (V/L)(T2+L2)/L2 =	297 plf	
	First opening: va1 = vb1 = H/(h _a .	+h _b) = 651 plf	Ch	eck v1*L1+v2*L2=V?	4218 lbf OK	
	3. Total boundary force above + below openings		7. Resistance to corner	forces		
	First opening: $O1 = va1 x$ (I	_o1) = 1303 lbf	7. Resistance to corner	R1 = v1*L1 =	2137 lbf	
	······································			R2 = v2*L2 =	2081 lbf	
	4. Corner forces					
	F1 = O1(L1)/(L1+	+L2) = 660 lbf	8. Difference corner for	ce + resistance		
	F2 = O1(L2)/(L1-	+L2) = 643 lbf		R1-F1 =	1477 lbf	
				R2-F2 =	1438 lbf	
	5. Tributary length of openings					
	T1 = (L1*L01)/(L1+		9. Unit shear in corner z			
	T2 = (L2*L01)/(L1+	+L2) = 0.99 ft		vc1 = (R1-F1)/L1 =	205 plf	
				vc2 = (R2-F2)/L2 =	205 plf	
	_V (lb)					
	-	2	m 4			
	Line 1	Line 2	Line 3			
	ŀ	H(lb)	H(lb)			
	ry of Shear Values for One Opening					
e 1: vc1(h _a +	ry of Shear Values for One Opening h _b)+v1(h _o)=H?			822	1784	2605 lbf
e 1: vc1(h _a + e 2: va1(h _a +	rry of Shear Values for One Opening +h_b)+v1(h_o)=H? +h_b)-vc1(h_a+h_b)-v1(h_o)=0?		2605	822	1784	0
1: vc1(h _a + 2: va1(h _a + 3: va1(h _a +	rry of Shear Values for One Opening ·h _b)+v1(h _o)=H? ·h _b)-vc1(h _a +h _b)-v1(h _o)=0? ·h _b)-vc2(h _a +h _b)-v1(h _o)=0?		2605 2605	822 822	1784 1784	0 0
1: vc1(h _a + 2: va1(h _a + 3: va1(h _a +	rry of Shear Values for One Opening +h_b)+v1(h_o)=H? +h_b)-vc1(h_a+h_b)-v1(h_o)=0?		2605	822	1784	0
e 1: vc1(h _a + e 2: va1(h _a + e 3: va1(h _a +	rry of Shear Values for One Opening ·h _b)+v1(h _o)=H? ·h _b)-vc1(h _a +h _b)-v1(h _o)=0? ·h _b)-vc2(h _a +h _b)-v1(h _o)=0?	Design St	2605	822 822	1784 1784	0 0
e 1: vc1(h _a + e 2: va1(h _a + e 3: va1(h _a +	rry of Shear Values for One Opening h _b)+v1(h _o)=H? +h _b)-vc1(h _a +h _b)-v1(h _o)=0? +h _b)-vc2(h _a +h _b)-v1(h _o)=0? h _b)+v2(h _o)=H? Req. Sheathing Capacity	4-Term Defle	2605 ummary* ection 0.453 in.	822 822 822	1784 1784 1784 3-Term Deflection	0 0 2605 lbf 0.498 in.
e 1: vc1(h _a + e 2: va1(h _a + e 3: va1(h _a +	$\label{eq:ry of Shear Values for One Opening} $$$ -h_b + v1(h_o) = H? $$$ +h_b - vc1(h_a + h_b - vc1(h_o) = 0? $$$ +h_b - vc2(h_a + h_b) - vc1(h_o) = 0? $$$ +h_b + v2(h_o) = H? $$$		2605 ummary* ection 0.453 in.	822 822 822	1784 1784 1784	0 0 2605 lbf

his version of the Force Transfer Around Openings calculator has expired. Please go to **www.apawood.org** to download the latest version.

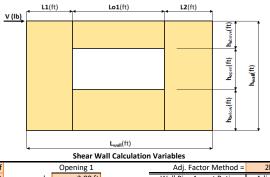

 L4
 5.42 ft
 Lo1
 1.50 ft
 Lo2
 1.50 ft
 Lo3
 1.50 ft
 P3=h_JL3=
 0.39
 N/A

 hwall
 9.92 ft
 P4=h_JL4=
 0.28
 N/A

 Lealt
 22.58 ft
 P4=h_JL4=
 0.28
 N/A

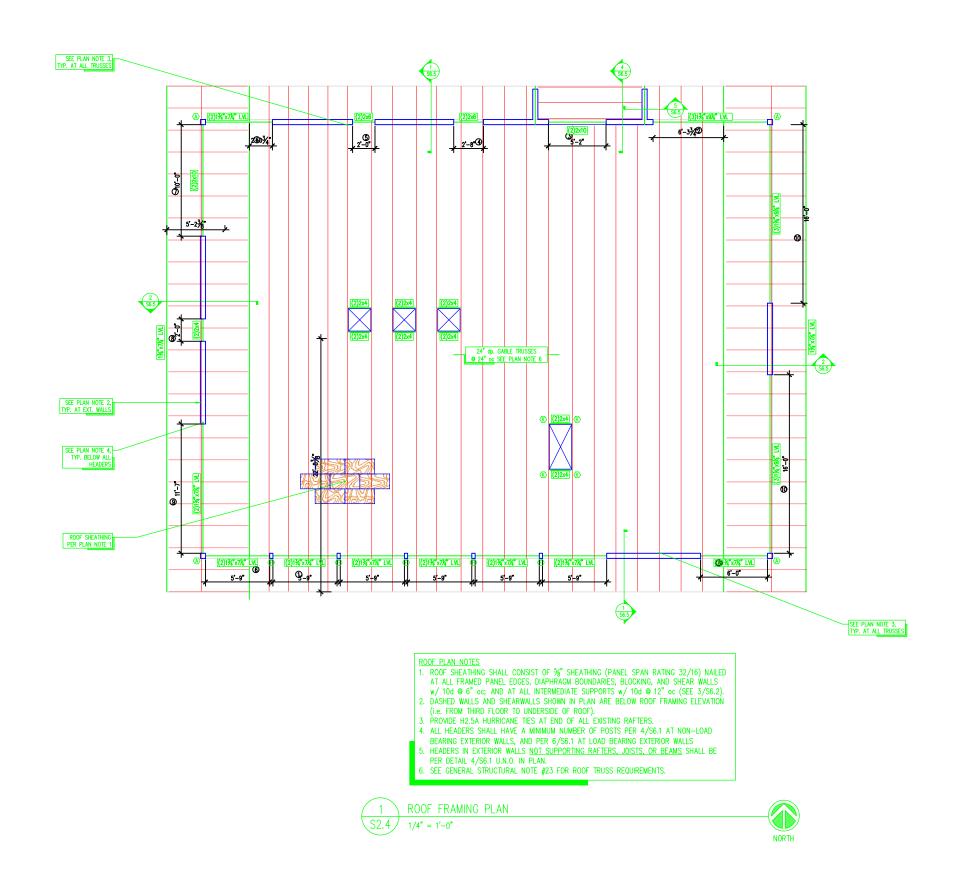
nd openir	ng: va1 = vb1 = H/(h_a 1+ h_b 1) = ng: va2 = vb2 = H/(h_a 2+ h_b 2) =	475	olf				v1 = (V/L)(L1		471 plf
nd openir									550 plf
		475		v2 = (V/L)(T2+L2+T3)/L2 = 550 pl v3 = (V/L)(T4+L3+T5)/L3 = 547 pl					
in a openin	$hg: va3 = vb3 = H/(h_a3+h_b3) =$	475					v4 = (V/L)(T4+L)		468 plf
	ig. vas – vus – n/(n _a s+n _b s) –	475	pii			Check v1*L1+v2			9096 lbf
orce abov	e + below openings					CHECK VI LIVZ	. 12.05 15.	V4 L4-V:	5050 101
	t opening: O1 = va1 x (Lo1) =	712			7. Resis	tance to corner			
	d opening: O2 = va2 x (Lo2) =	712						= v1*L1 =	2356 lbf
Third	d opening: O3 = va3 x (Lo3) =	712	lbf					= v2*L2 =	2107 lbf
									2095 lbf 2537 lbf
	F1 = O1(1)/(1+ 2) =	403	lbf				N4	- V4 L4 -	2537 101
					8. Diffe	ence corner for	ce + resista	nce	
								R1-F1 =	1953 lbf
	F4 = O2(L3)/(L2+L3) =	356	lbf				F	R2-F2-F3 =	1442 lbf
	F5 = O3(L3)/(L3+L4) =	295	lbf				F	R3-F4-F5 =	1444 lbf
	F6 = O3(L4)/(L3+L4) =	417	lbf					R4-F6 =	2120 lbf
of openin	nc				9 Unit	hear in corner 7	ones		
oropenna	T1 = (L1*Lo1)/(L1+L2) =	0.85	ft		5.0111			1-F1)/L1 =	391 plf
	T2 = (L2*Lo1)/(L1+L2) =	0.65	ft				vc2 = (R2-F	2-F3)/L2 =	377 plf
	T3 = (L2*Lo2)/(L2+L3) =	0.75	ft				vc3 = (R3-F	4-F5)/L3 =	377 plf
	T4 = (L3*Lo2)/(L2+L3) =	0.75	ft				vc4 = (R	4-F6)/L4 =	391 plf
	T5 = (L3*Lo3)/(L3+L4) =	0.62	ft						
									1
								1	
ine 2	ine 3	ine 4		ine 5	ine 6		ine 7	ine 8	
-	-	_		-			_		
								1	
•• b)				-		• • • •	v _{max}	– • • • • H(lb)	1
									-
									3995 lbf
									0
									0
									0
									0
									0
					395				3995 lbf
)(1.85)						5255		702	5555 101
	550-16				_				0.400 %
									0.199 in. 0.007 %
		4-1		.000 %	0		5-Term Sto	ny Dritt 76	0.007 %
	b) Shear Vali)+v1(h_1)=)-v21(h_21+)-v2(h_02)-)-v2(h_02)-)-v3(h_02)-)-v3(h_02)-)-v2(h_12+)-v3(h_2)-)-v3(h_2)	F5 = O3(13)/(13+14) = F6 = O3(14)/(13+14) = F6 = O3(14)/(13+14) = F6 = O3(14)/(13+14) = F6 = O3(14)/(13+12) = F3 = (12*102)/(12+13) = F3 = (12*102)/(12+13) = F3 = (12*102)/(13+14) = F6 = (14*103)/(13+14) = F6 = F	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F2 = 01(12)/(L1+12) = 309 lbf 8. Differ F3 = 02(12)/(L2+13) = 356 lbf 56 lbf F4 = 02(13)/(L3+14) = 295 lbf 56 lbf F5 = 03(13)/(L3+14) = 295 lbf 9. Unit s f6 = 03(14)/(L3+12) = 0.85 ft 9. Unit s T1 = (L1*lo1)/(L1+12) = 0.85 ft 9. Unit s T3 = (L2*lo2)/(L2+13) = 0.75 ft 75 (L3*lo2)/(L3+14) = T5 = (13*lo3)/(L3+14) = 0.62 ft 76 = (L4*lo3)/(L3+14) = T6 = (L4*lo3)/(L3+14) = 0.88 ft 9 Shear Values for Three Openings 9. Unit s 9 b) 558er Value, for Three Openings 99 V=2(h_1)+v1(h_1)+r1 99 399 V=2(h_2)+v2(h_12+h_2)=0? 399 V=2(h_2)+v2(h_2+h_2)=0? 399 V=2(h_2)+v2(h_2+h_2)=0? 399 V=2(h_2)+v2(h_2+h_2)=0? 399 V=2(h_2)+v2(h_2+h_2)=0? 399 V=2(h_2)+v2(h_2+h_2)=0? 399 V=2(h_2+h_2)+3(h_2+0? 399 V=2(h_2+h_2)+3(h_2+0? 399 V=2(h_2+h_2)+3(h_2+0? 399 V=2(h_2+h_2)+3(h_2+0? 399	F2 = 01(12)/(12+12) = 309 lbf 8. Difference corner for F3 = 02(12)/(12+12) = 356 lbf 56 lbf F4 = 02(13)/(12+12) = 356 lbf 56 lbf F5 = 03(13)/(12+12) = 255 lbf 9. Unit shear in corner z T1 = (12*lo1)/(11+12) = 0.85 ft 9. Unit shear in corner z T2 = (12*lo1)/(12+13) = 0.75 ft 73 = (12*lo2)/(12+13) = 0.75 ft T3 = (12*lo2)/(12+13) = 0.75 ft 75 = (13*lo3)/(13+14) = 0.88 ft 9. Unit shear in corner z T5 = (13*lo3)/(13+14) = 0.88 ft 9 9. Shear Values for Three Openings Iv=(11,1)+11/7 3995 3288 Iv=(11,1)+11/(1,1)=0? 3995 3288 Iv=(11,1)+11/(1,1)=10? 3995 3288 Iv=(11,1)+11/(1,1)=10? 3395 3214 Iv=(11,2)+12,12,12,12) 3395 3174 Iv=(11,2)+12,12,12,12) 3995 3214 Iv=(11,2)+12,2)+12,12,12,12) 3995 3214 Iv=(11,2)+12,2)+12,12,12,12) 3995 3214 Iv=(11,2)+12,2)+12,12,12,12) 3995 3214 Iv=(11,2)+12,2)+12,12,12,12)	F1 = 01(L1)/(L1+L2) = 403 lbf 8. Difference corner force + resistant F3 = 02(L2)/(L2+L3) = 356 lbf 9 F4 = 02(L3)/(L2+L3) = 356 lbf 9 F6 = 03(L4)/(L3+L4) = 417 lbf 9. Unit shear in corner zones T1 = (L1*L01)/(L1+L2) = 0.85 ft vc1 = (R T2 = (L2*L01)/(L1+L2) = 0.85 ft vc2 = (R2, F T3 = (L2*L02)/(L2+L3) = 0.75 ft vc3 = (R2, F T4 = (L3*L02)/(L3+L4) = 0.88 ft vc4 = (R T5 = (L4*L03)/(L3+L4) = 0.88 ft vc4 = (R T6 = (L4*L03)/(L3+L4) = 0.88 ft vc4 = (R Vulub, 10+H7 3288 vc4 = (R Vy2(L_1)-2(L_1+L_2) = 0.82 ft 3288 Vy2(L_1)-2(L_1+L_	F2 = 01(12)/(12+12) = 309 lbf 8. Difference corner force + resistance F3 = 02(12)/(12+13) = 356 lbf R1+1 = F4 = 02(13)/(12+13) = 356 lbf R2+72+3 = F5 = 03(13)/(13+14) = 417 lbf R3+64+5 = of openings 9. Unit shear in corner zones T1 = (12*(01)/(11+12) = 0.85 ft) vc1 = (R1+F1)/(1 = T3 = (12*(02)/(12+13) = 0.75 ft) vc3 = (R3+74+75)/(13 = T4 = (13*(02)/(12+13) = 0.75 ft) vc3 = (R3+74+75)/(13 = T5 = (14*(03)/(13+14) = 0.62 ft) vc4 = (R4+F6)/(4 = T5 = (14*(03)/(13+14) = 0.88 ft) vc4 = (R4+F6)/(4 = Shear Values for Three Openings 9 g Iv=(11, 10, 1) 3288 707 Iv=(11, 10, 1) 3395 827 3370 Iv=(11, 10, 10, 1) 3395 827 3370 Iv=(11, 10, 10, 1) 3395 827 3370 Iv=(11, 10, 10, 10, 10, 10, 10, 10, 10, 10,

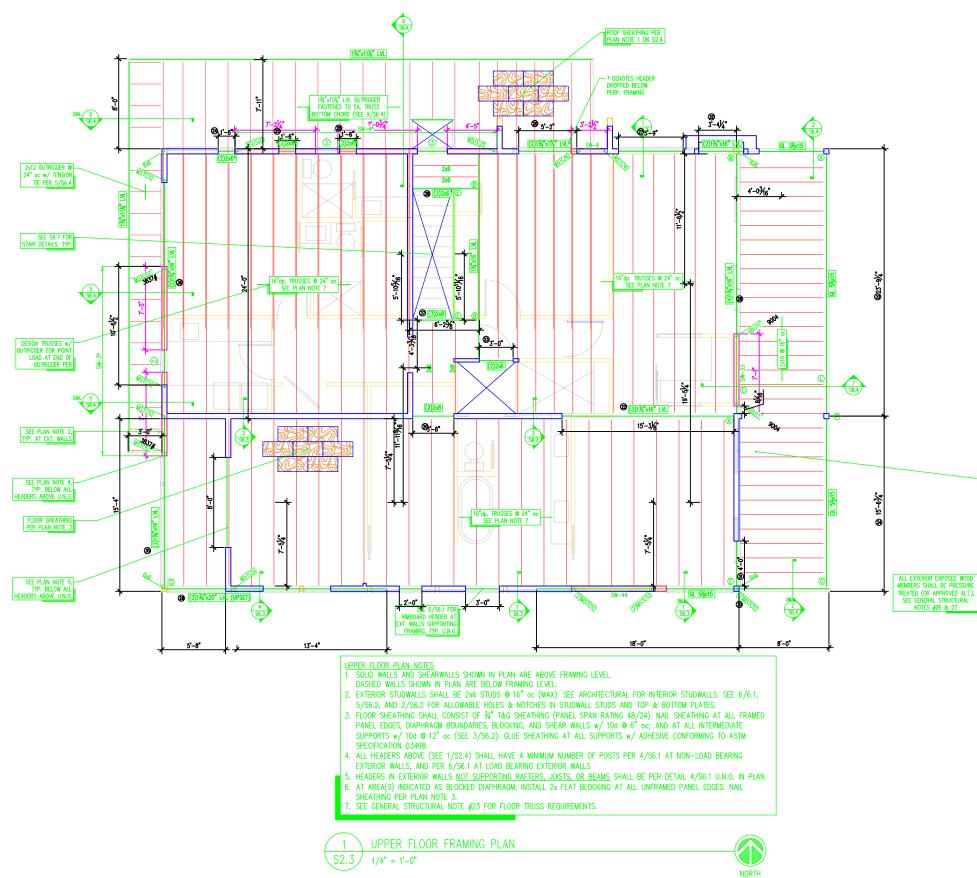
L3	3.83 ft	h _b 1	3.00 ft	h _b 2	3.00 ft	h _b 3	3.00 ft	P2=h _o /L2=	0.82	N/A	
L4	13.83 ft	Lo1	6.00 ft	Lo2	2.00 ft	Lo3	3.00 ft	P3=h_/L3=	1.31	N/A	
h _{wall}	10.00 ft							P4=h _o /L4=	0.36	N/A	
Lwall	38.07 ft									•	


1. Hold-down fo 2. Unit shear ab			2225 lbf		6. Unit shear	beside opening v1 =	V/L)(L1+T1)/L1 =	364 plf	
First opening: va1 = vb1 = H/(h _a 1+h _b 1) =			445 plf						
9		ng: va2 = vb2 = H/(h_2+h_2) =	445 plf	v3 = (V/L)(T4+L3+T5)/L3 = 305 p					
	Third openii	ng: va3 = vb3 = H/(h_3+h_3) =	445 plf				V/L)(T6+L4)/L4 =	260 plf	
					Chee		v3*L3+v4*L4=V?	8469 lbf	
3. Total bounda		e + below openings t opening: O1 = va1 x (Lo1) =	2670 lbf		7 Resistance	to corner force	<i>د</i>		
		d opening: O2 = va2 x (Lo2) =	890 lbf				R1 = v1*L1 =	1213 lbf	
		d opening: O3 = va3 x (Lo3) =	1335 lbf				R2 = v2*L2 =	2488 lbf	
							R3 = v3*L3 =	1169 lbf	
4. Corner forces	5						R4 = v4*L4 =	3599 lbf	
		F1 = O1(L1)/(L1+L2) =	945 lbf						
		F2 = O1(L2)/(L1+L2) =	1725 lbf		8. Difference	corner force +			
		F3 = O2(L2)/(L2+L3) =	546 lbf				R1-F1 =	268 lbf	
		F4 = O2(L3)/(L2+L3) =	344 lbf				R2-F2-F3 =	217 lbf	
		F5 = O3(L3)/(L3+L4) =	289 lbf				R3-F4-F5 =	535 lbf	
		F6 = O3(L4)/(L3+L4) =	1045 lbf				R4-F6 =	2554 lbf	
5. Tributary len	gth of openin	*			9. Unit shear	in corner zones			
		T1 = (L1*Lo1)/(L1+L2) =	2.12 ft				c1 = (R1-F1)/L1 =	81 plf	
		T2 = (L2*Lo1)/(L1+L2) =	3.88 ft				= (R2-F2-F3)/L2 =	36 plf	
		T3 = (L2*Lo2)/(L2+L3) =	1.23 ft				= (R3-F4-F5)/L3 =	140 plf	
		T4 = (L3*Lo2)/(L2+L3) =	0.77 ft 0.65 ft			v	c4 = (R4-F6)/L4 =	185 plf	
		T5 = (L3*Lo3)/(L3+L4) = T6 = (L4*Lo3)/(L3+L4) =	2.35 ft						
Line 1	Line 2	Line 3	Line 4	Line 5	Line 6		Line 7	Line 8	
j	← ← ← ← , H(lb)		· · · · · ·		-			ы	
		ues for Three Openings							
Line 1: vc1(h _a 1+						403	1822	2225 lbf	
Line 2: va1(h _a 1+		5, , , , , ,			2225	403	1822	0	
		va1(h _a 1+h _b 1)=0?			179	2046	2225	0	
Line 4: va2(h _a 2+					2225	2046	179	0	
Line 5: va2(h _a 2+					2225	699	1526	0	
Line 6: va3(h _a 3+					2225 2225	1526 923	699 1301	0	
Line 7: va3(h _a 3+ Line 8: vc4(h _a 3+					2225	923	1301	0 2225 lbf	
Line of Ver(higo)	1857.14(1857					525	1501	2223 101	
Dee Cheeth	ing Conseitu	445 -16	Desig 4-Term De	n Summary*		2	Torra Deflection	0.400 in	
Req. Sheath		445 plf 1725 lbf					Term Deflection erm Story Drift %	0.406 in. 0.014 %	
	. Strap Force HD Force (H)	1725 lbf 2225 lbf	4-Term Stor	y Drift % 0.012 %		3-Te	erm Story Drift %	0.014 %	
neq.									

This version of the Force Transfer Around Openings calculator has expired. Please go to **www.apawood.org** to download the latest version.

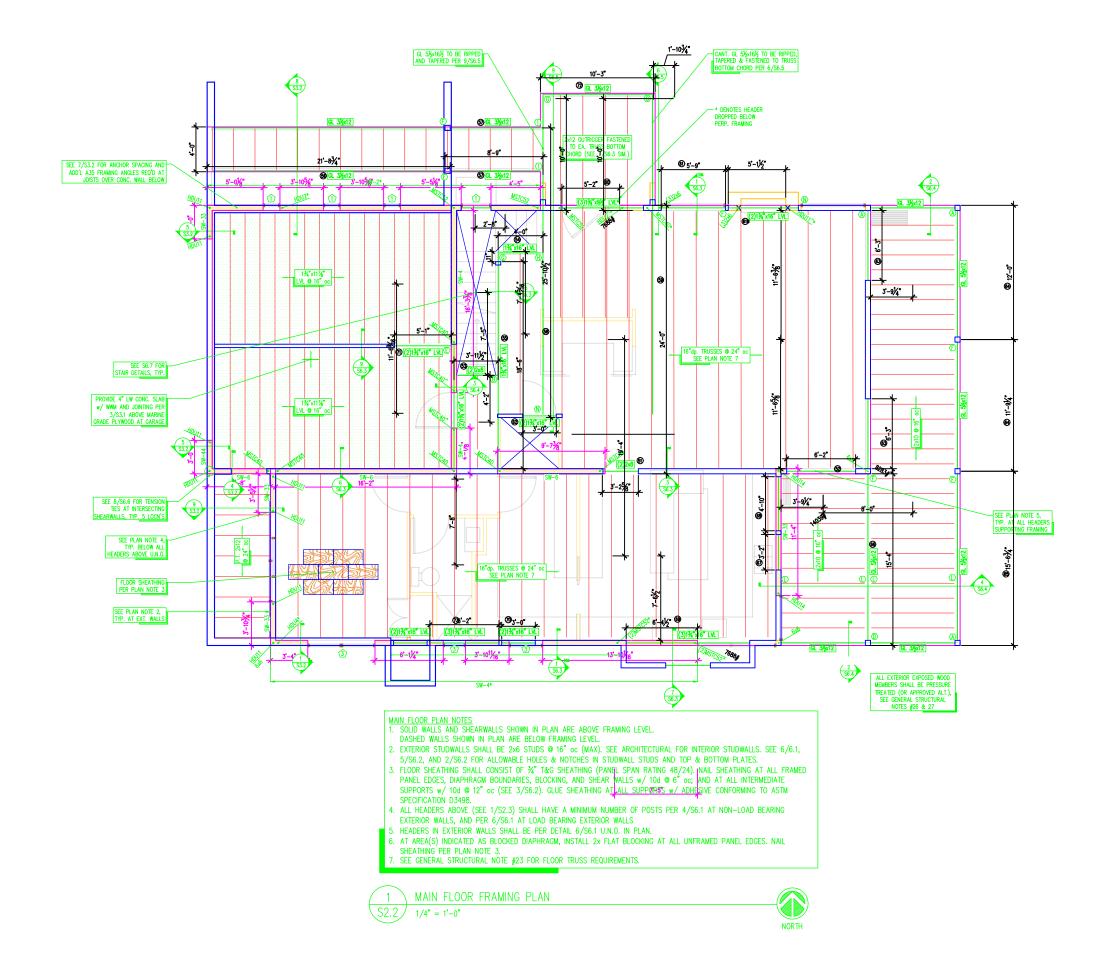
Project Information


Fiojectimoni		
Code:	2018 WBC	Date:
Designer:	JDA	
Client:	Centerline	
Project:	Mithalia	
Wall Line:	W - Upper to Roof	



cooc lbf

v	101 0550	Opening 1		Auj. Factor Wethou = 205/11			
L1	7.42 ft	h _a	2.00 ft		Wall Pier Asp	ect Ratio	Adj. Factor
L2	7.42 ft	h _o	5.50 ft		P1=h _o /L1=	0.74	N/A
h _{wall}	10.50 ft	h _b	3.00 ft		P2=h _o /L2=	0.74	N/A
L _{wall}	16.84 ft	Lo1	2.00 ft				


1. Hold-down forces: H = Vh _{wall} /	L _{wall}	3951 lbf	6. Unit shear	peside opening	I		
					//L)(L1+T1)/L1 =		
2. Unit shear above + below ope					//L)(T2+L2)/L2 =		
First opening	$va1 = vb1 = H/(h_a+h_b) =$	790 plf		Check v	1*L1+v2*L2=V?	6336 lbf OK	
3. Total boundary force above +	below openings		7. Resistance	to corner force	S		
First op	ening: O1 = va1 x (Lo1) =	1580 lbf			R1 = v1*L1 =		
					R2 = v2*L2 =	= 3168 lbf	
4. Corner forces							
	F1 = O1(L1)/(L1+L2) =	790 lbf	8. Difference	corner force + I			
	F2 = O1(L2)/(L1+L2) =	790 lbf			R1-F1 =		
					R2-F2 =	2378 lbf	
5. Tributary length of openings							
	T1 = (L1*Lo1)/(L1+L2) =	1.00 ft	9. Unit shear	n corner zones			
	T2 = (L2*Lo1)/(L1+L2) =	1.00 ft			1 = (R1-F1)/L1 =		
				VC	2 = (R2-F2)/L2 =	= 320 plf	
	V (lb)						
	-	2	m	4			
	Line 1	Line 2	Line 3	Line 4			
	H(lb)		v _{max} H(ь)			
Summary of Shear Values for One Openin	g						
$vc1(h_a+h_b)+v1(h_o)=H?$					1602	2348	3951 lbf
$va1(h_a+h_b)-vc1(h_a+h_b)-v1(h_o)=0?$				3951	1602	2348	0
$va1(h_a+h_b)-vc2(h_a+h_b)-v1(h_o)=0?$				3951	1602	2348	0
vc2(h _a +h _b)+v2(h _o)=H?					1602	2348	3951 lbf
		Design S	ummary*				
Req. Sheathing Capacity	790 plf	4-Term Def	lection 0.299 in.			3-Term Deflection	0.341 in.
Req. Strap Force	790 lbf	4-Term Story	Drift % 0.009 %			3-Term Story Drift %	0.011 %
Req. HD Force (H)	951 lbf						
q. Shear Wall Anchorage Force (v _{max})	376 plf						

SEE PLAN NOTE 5, TYP. AT ALL HEADERS SUPPORTING FRAMING

Mithalia Residence

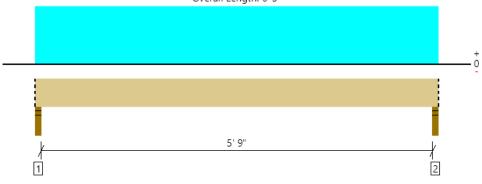
Roof			
Member Name	Results	Current Solution	Comments
1	Passed	2 piece(s) 1 3/4" x 7 1/4" 2.0E Microllam® LVL	
2	Passed	3 piece(s) 1 3/4" x 9 1/4" 2.0E Microllam® LVL	
3	Passed	2 piece(s) 2 x 10 DF No.1	
4	Passed	2 piece(s) 2 x 6 DF No.1	
6	Passed	2 piece(s) 1 3/4" x 7 1/4" 2.0E Microllam® LVL	
7	Passed	2 piece(s) 2 x 10 DF No.1	
8	Passed	1 piece(s) 2 x 4 DF No.1	
9	Passed	2 piece(s) 1 3/4" x 7 1/4" 2.0E Microllam® LVL	
10	Passed	3 piece(s) 1 3/4" x 9 1/4" 2.0E Microllam® LVL	
Upper			
Member Name	Results	Current Solution	Comments
20	Passed	2 piece(s) 2 x 8 DF No.1	
22	Passed	3 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
23	Passed	2 piece(s) 2 x 6 DF No.1	
24	Passed	2 piece(s) 2 x 4 DF No.1	
25	Passed	2 piece(s) 2 x 6 DF No.1	
26	Passed	2 piece(s) 1 3/4" x 7 1/4" 1.55E TimberStrand® LSL	
27	Passed	1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
28	Passed	4 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
28 (w_overstrength)	Failed	4 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	Multiple Failures/Errors
29	Passed	3 piece(s) 1 3/4" x 20" 2.0E Microllam® LVL	
30	Failed	1 piece(s) 5 1/2" x 15" 24F-V8 DF Glulam	Right cantilever exceeds the maximum braced cantilever length of 7 ¹ .
31	Passed	1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
32	Passed	2 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
33	Passed	1 piece(s) 5 1/2" x 15" 24F-V4 DF Glulam	
34	Passed	1 piece(s) 5 1/2" x 15" 24F-V4 DF Glulam	
35	Passed	2 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
35 (w_overstrength)	Failed	2 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	Multiple Failures/Errors
36	Passed	2 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
37	Passed	3 piece(s) 2 x 8 DF No.1	
38	Passed	3 piece(s) 2 x 6 DF No.1	

Job Notes

4/25/2023 6:25:06 PM UTC ForteWEB v3.5 File Name: Mithalia Residence

Main			
Member Name	Results	Current Solution	Comments
Garage Joists	Passed	1 piece(s) 1 3/4" x 11 1/4" 2.0E Microllam® LVL @ 16" OC	
51	Passed	2 piece(s) 2 x 8 DF No.1	
52	Passed	1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
53	Passed	2 piece(s) 2 x 8 DF No.1	
54	Passed	1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
55	Passed	1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
56	Passed	1 piece(s) 3 1/2" x 12" 24F-V4 DF Glulam	
57	Passed	1 piece(s) 3 1/2" x 12" 24F-V4 DF Glulam	
58	Failed	1 piece(s) 5 1/2" x 16" 24F-V8 DF Glulam	Right cantilever exceeds the maximum braced cantilever length of 7'.
59	Failed	1 piece(s) 5 1/2" x 16" 24F-V4 DF Glulam	Right cantilever exceeds the maximum braced cantilever length of 7'.
60	Failed	3 piece(s) 1 3/4" x 9 1/4" 2.0E Microllam® LVL	An excessive uplift of -1620 lbs at support located at 7' 6 1/2" failed this product.
60 (w_overstrength)	Failed	3 piece(s) 1 3/4" x 9 1/4" 2.0E Microllam® LVL	Multiple Failures/Errors
61A	Passed	1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
61B	Passed	2 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
62	Passed	1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
63	Passed	1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
64A	Passed	1 piece(s) 3 1/2" x 12" 24F-V4 DF Glulam	
64B	Passed	1 piece(s) 3 1/2" x 12" 24F-V4 DF Glulam	
65	Passed	1 piece(s) 3 1/2" x 12" 24F-V4 DF Glulam	
66	Passed	1 piece(s) 5 1/2" x 12" 24F-V4 DF Glulam	
67	Passed	1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
68	Passed	1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
69	Passed	3 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
69 (w_overstrength)	Failed	3 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	Multiple Failures/Errors
70	Passed	2 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
71	Passed	2 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
72	Passed	1 piece(s) 3 1/2" x 12" 24F-V4 DF Glulam	
73	Passed	3 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
33+34	Passed	1 piece(s) 6 x 6 DF No.1	
33+34+66+63	Passed	1 piece(s) 6 x 6 DF No.1	

Job Notes



4/25/2023 6:25:06 PM UTC ForteWEB v3.5 File Name: Mithalia Residence

Roof, 1 2 piece(s) 1 3/4" x 7 1/4" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3924 @ 1 1/2"	6563 (3.00")	Passed (60%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	2852 @ 10 1/4"	5544	Passed (51%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	5651 @ 3' 1 1/2"	8182	Passed (69%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.103 @ 3' 1 1/2"	0.300	Passed (L/697)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.190 @ 3' 1 1/2"	0.400	Passed (L/378)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

0

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - DF	3.00"	3.00"	1.79"	1796	2128	3924	Blocking
2 - Stud wall - DF	3.00"	3.00"	1.79"	1796	2128	3924	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 3" o/c	
Bottom Edge (Lu)	6' 3" o/c	

•Maximum allowable bracing intervals based on applied load.

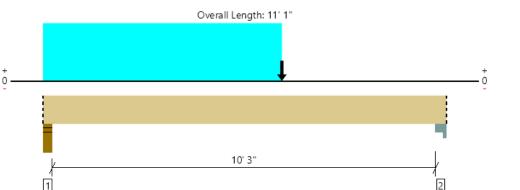
Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 6' 3"	N/A	7.4		
1 - Uniform (PSF)	0 to 6' 3" (Top)	22' 8 3/8"	25.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	



4/25/2023 6:25:06 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Mithalia Residence Page 3 / 67

Roof, 2

3 piece(s) 1 3/4" x 9 1/4" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	7011 @ 3"	10041 (4.50")	Passed (70%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	5564 @ 1' 1 3/4"	10611	Passed (52%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-Ibs)	17751 @ 5' 6 5/8"	19327	Passed (92%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.286 @ 5' 5 1/16"	0.525	Passed (L/441)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.530 @ 5' 5 1/16"	0.700	Passed (L/238)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

PASSED

• Deflection criteria: LL (L/240) and TL (L/180).

Allowed moment does not reflect the adjustment for the beam stability factor.

Available					
/ Wallable	Required	Dead	Snow	Factored	Accessories
4.50"	3.14"	3229	3782	7011	Blocking
5.50"	1.50"	1916	2204	4120	Blocking
-	5.50"	5.50" 1.50"	5.50" 1.50" 1916	5.50" 1.50" 1916 2204	

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 3" o/c	
Bottom Edge (Lu)	11' 1" o/c	

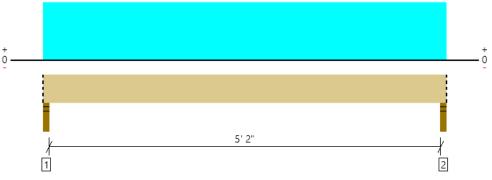
•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
.,		Tributory Midth			
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 11' 1"	N/A	14.2		
1 - Uniform (PSF)	0 to 6' 6 3/4" (Top)	22' 8 3/8"	25.0	30.0	Default Load
2 - Point (Ib)	6' 6 3/4" (Top)	N/A	1264	1517	50.6 sf tributary

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

I	ForteWEB Software Operator	Job Notes
1	Javid Abdi Atlas Consulting Engineers (206) 427-7233 aviddabdi@yahoo.com	



Roof, 3 2 piece(s) 2 x 10 DF No.1

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3557 @ 1 1/2"	5625 (3.00")	Passed (63%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	2275 @ 1' 1/4"	3830	Passed (59%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-Ibs)	4604 @ 2' 10"	4510	Passed (102%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.039 @ 2' 10"	0.271	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.072 @ 2' 10"	0.361	Passed (L/899)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports				
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories		
1 - Stud wall - DF	3.00"	3.00"	1.90"	1628	1929	3557	Blocking		
2 - Stud wall - DF	3.00"	3.00"	1.90"	1628	1929	3557	Blocking		
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.									

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6" o/c	
Bottom Edge (Lu)	5' 8" o/c	

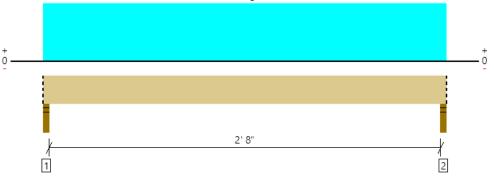
•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 5' 8"	N/A	7.0		
1 - Uniform (PSF)	0 to 5' 8" (Top)	22' 8 3/8"	25.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	



Roof, 4 2 piece(s) 2 x 6 DF No.1

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1983 @ 1 1/2"	5625 (3.00")	Passed (35%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1096 @ 8 1/2"	2277	Passed (48%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1332 @ 1' 7"	1884	Passed (71%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.016 @ 1' 7"	0.146	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.029 @ 1' 7"	0.194	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

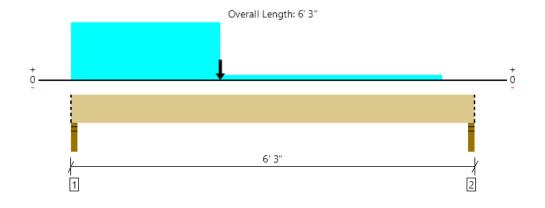
	Bearing Length			Loads	to Supports				
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories		
1 - Stud wall - DF	3.00"	3.00"	1.50"	905	1078	1983	Blocking		
2 - Stud wall - DF	3.00"	3.00"	1.50"	905	1078	1983	Blocking		
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.									

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 2" o/c	
Bottom Edge (Lu)	3' 2" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 3' 2"	N/A	4.2		
1 - Uniform (PSF)	0 to 3' 2" (Top)	22' 8 3/8"	25.0	30.0	Default Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	

2 piece(s) 1 3/4" x 7 1/4" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4311 @ 1 1/2"	6563 (3.00")	Passed (66%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	3239 @ 10 1/4"	5544	Passed (58%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	6083 @ 2' 3 3/4"	8182	Passed (74%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.093 @ 2' 11 3/16"	0.300	Passed (L/777)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.171 @ 2' 11 3/16"	0.400	Passed (L/421)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

PASSED

• Deflection criteria: LL (L/240) and TL (L/180).

Allowed moment does not reflect the adjustment for the beam stability factor.

Bearing Length			Loads	to Supports	1	
Total	Available	Required	Dead	Snow	Factored	Accessories
3.00"	3.00"	1.97"	1972	2339	4311	Blocking
3.00"	3.00"	1.50"	822	959	1781	Blocking
	3.00" 3.00"	3.00" 3.00" 3.00" 3.00"	3.00" 3.00" 1.97" 3.00" 3.00" 1.50"	3.00" 3.00" 1.97" 1972 3.00" 3.00" 1.50" 822	3.00" 3.00" 1.97" 1972 2339 3.00" 3.00" 1.50" 822 959	3.00" 3.00" 1.97" 1972 2339 4311

els are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 3" o/c	
Bottom Edge (Lu)	6' 3" o/c	

•Maximum allowable bracing intervals based on applied load.

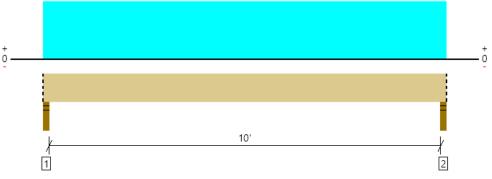
			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 6' 3"	N/A	7.4		
1 - Uniform (PSF)	0 to 2' 3 3/4" (Top)	22' 8 3/8"	25.0	30.0	Default Load
2 - Point (Ib)	2' 3 3/4" (Top)	N/A	1264	1517	50.6 sf tributary
3 - Uniform (PSF)	2' 3 3/4" to 5' 9" (Top)	2'	25.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Javid Abdi	
Atlas Consulting Engineers	
(206) 427-7233	
iaviddabdi@vahoo.com	



4/25/2023 6:25:06 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Mithalia Residence Page 7 / 67

Roof, 7 2 piece(s) 2 x 10 DF No.1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1538 @ 1 1/2"	5625 (3.00")	Passed (27%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1239 @ 1' 1/4"	3830	Passed (32%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	3847 @ 5' 3"	4510	Passed (85%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.115 @ 5' 3"	0.512	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.216 @ 5' 3"	0.683	Passed (L/569)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories	
1 - Stud wall - DF	3.00"	3.00"	1.50"	719	819	1538	Blocking	
2 - Stud wall - DF	3.00"	3.00"	1.50"	719	819	1538	Blocking	
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.								

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	9' 2" o/c	
Bottom Edge (Lu)	10' 6" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 10' 6"	N/A	7.0		
1 - Uniform (PSF)	0 to 10' 6" (Top)	5' 2 3/8"	25.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	287 @ 1 1/2"	2813 (3.00")	Passed (10%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	132 @ 6 1/2"	725	Passed (18%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	110 @ 1'	440	Passed (25%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.004 @ 1'	0.087	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.007 @ 1'	0.117	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

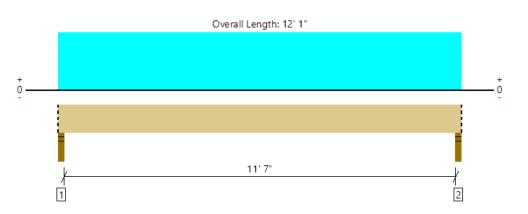
	Bearing Length			Loads	to Supports			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories	
1 - Stud wall - DF	3.00"	3.00"	1.50"	131	156	287	Blocking	
2 - Stud wall - DF	3.00"	3.00"	1.50"	131	156	287	Blocking	
 Blocking Panels are assumed to carry no load 	Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.							

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	2' o/c	
Bottom Edge (Lu)	2' o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 2'	N/A	1.3		
1 - Uniform (PSF)	0 to 2' (Top)	5' 2 3/8"	25.0	30.0	Default Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	

Roof, 9 2 piece(s) 1 3/4" x 7 1/4" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1772 @ 1 1/2"	6563 (3.00")	Passed (27%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1521 @ 10 1/4"	5544	Passed (27%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	5134 @ 6' 1/2"	8182	Passed (63%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.322 @ 6' 1/2"	0.592	Passed (L/441)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.605 @ 6' 1/2"	0.789	Passed (L/235)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

Bearing Length	Loads	to Supports		
Total Available Requ	uired Dead	Snow	Factored	Accessories
DF 3.00" 3.00" 1.1	50" 830	942	1772	Blocking
DF 3.00" 3.00" 1.1	50" 830	942	1772	Blocking
	50	0" 830	0" 830 942	0" 830 942 1772

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	12' 1" o/c	
Bottom Edge (Lu)	12' 1" o/c	

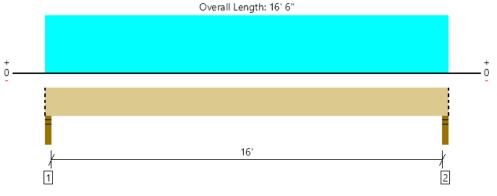
•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 12' 1"	N/A	7.4		
1 - Uniform (PSF)	0 to 12' 1" (Top)	5' 2 3/8"	25.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	

4/25/2023 6:25:06 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Mithalia Residence Page 10 / 67

Roof, 10 3 piece(s) 1 3/4" x 9 1/4" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2475 @ 1 1/2"	9844 (3.00")	Passed (25%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	2169 @ 1' 1/4"	10611	Passed (20%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-Ibs)	9904 @ 8' 3"	19327	Passed (51%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.365 @ 8' 3"	0.813	Passed (L/534)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.703 @ 8' 3"	1.083	Passed (L/277)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

· Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - DF	3.00"	3.00"	1.50"	1189	1286	2475	Blocking
2 - Stud wall - DF	3.00"	3.00"	1.50"	1189	1286	2475	Blocking
Recking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being decigned							

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	g	Bracing Intervals	Comments
Top Edge (Lu)		16' 6" o/c	
Bottom Edge (Lu)		16' 6" o/c	

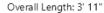
•Maximum allowable bracing intervals based on applied load.

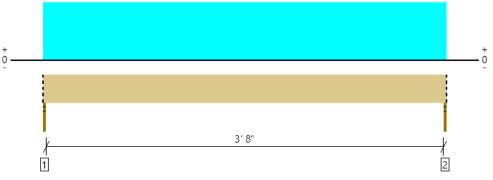
Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 16' 6"	N/A	14.2		
1 - Uniform (PSF)	0 to 16' 6" (Top)	5' 2 3/8"	25.0	30.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	



4/25/2023 6:25:06 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Mithalia Residence Page 11 / 67

Upper, 20 2 piece(s) 2 x 8 DF No.1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1891 @ 0	2813 (1.50")	Passed (67%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1187 @ 8 3/4"	2610	Passed (45%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1851 @ 1' 11 1/2"	2628	Passed (70%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.016 @ 1' 11 1/2"	0.098	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.032 @ 1' 11 1/2"	0.196	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories	
1 - Stud wall - DF	1.50"	1.50"	1.50"	951	940	1891	Blocking	
2 - Stud wall - DF	1.50"	1.50"	1.50"	951	940	1891	Blocking	
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.								

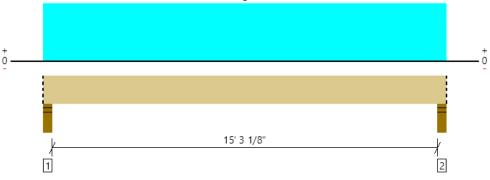
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 11" o/c	
Bottom Edge (Lu)	3' 11" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 11"	N/A	5.5		
1 - Uniform (PSF)	0 to 3' 11" (Top)	12'	40.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	

Upper, 22 3 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	12644 @ 3"	14766 (4.50")	Passed (86%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	9946 @ 1' 8 1/2"	15960	Passed (62%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	47498 @ 8' 1/16"	46671	Passed (102%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.315 @ 8' 1/16"	0.388	Passed (L/592)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.639 @ 8' 1/16"	0.776	Passed (L/291)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports				
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories		
1 - Stud wall - DF	4.50"	4.50"	3.85"	6420	6224	12644	Blocking		
2 - Stud wall - DF	4.50"	4.50"	3.85"	6420	6224	12644	Blocking		
2 - Stud war > Did Blocking > Did war > Did w									

above them and the full load is ap

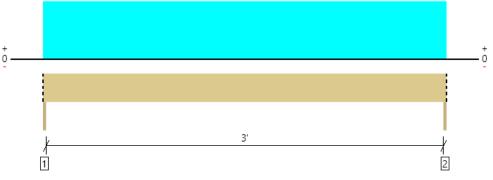
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6" o/c	
Bottom Edge (Lu)	16' o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 16' 1/8"	N/A	24.5		
1 - Uniform (PSF)	0 to 16' 1/8" (Top)	19' 5 1/4"	40.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this broughts will be in accordance will be in accordance in weight ades product besign orders and publicle out the software is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	

Upper, 23 2 piece(s) 2 x 6 DF No.1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1531 @ 0	2813 (1.50")	Passed (54%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	981 @ 7"	1980	Passed (50%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1244 @ 1' 7 1/2"	1639	Passed (76%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.017 @ 1' 7 1/2"	0.081	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.033 @ 1' 7 1/2"	0.162	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length				Loads to Sup				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories	
1 - Beam - DF	1.50"	1.50"	1.50"	752	779	-68	1531	Blocking	
2 - Beam - DF	1.50"	1.50"	1.50"	752	779	-68	1531	Blocking	
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.									

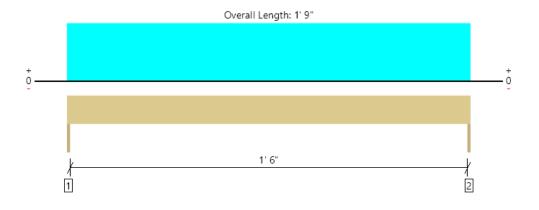
carry no loads applied directly above them and the full load is applied to the member being design

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 3" o/c	
Bottom Edge (Lu)	3' 3" o/c	
		•

•Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 3' 3"	N/A	4.2			
1 - Uniform (PLF)	0 to 3' 3" (Front)	N/A	458.5	479.5	-42.0	Linked from: Floor: Joist w/ Cant, Support 1

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library

ForteWEB Software Operator	Job Notes
Javid Abdi	
Atlas Consulting Engineers	
(206) 427-7233	
javiddabdi@yahoo.com	

Upper, 24 2 piece(s) 2 x 4 DF No.1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1044 @ 0	2813 (1.50")	Passed (37%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	506 @ 5"	1260	Passed (40%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	422 @ 10 1/2"	766	Passed (55%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.007 @ 10 1/2"	0.058	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.014 @ 10 1/2"	0.087	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

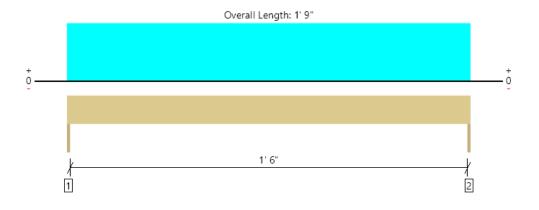
	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Trimmer - DF	1.50"	1.50"	1.50"	545	420	245	1044	None
2 - Trimmer - DF	1.50"	1.50"	1.50"	545	420	245	1044	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	1' 9" o/c	
Bottom Edge (Lu)	1' 9" o/c	

•Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 1' 9"	N/A	2.7			
1 - Uniform (PLF)	0 to 1' 9"	N/A	620.5	480.5	279.5	Linked from: Floor: Joist w/ Cant, Support 2

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Javid Abdi	
Atlas Consulting Engineers	
(206) 427-7233	
javiddabdi@yahoo.com	

Upper, 25 2 piece(s) 2 x 6 DF No.1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2083 @ 0	2813 (1.50")	Passed (74%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	694 @ 7"	2277	Passed (30%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-lbs)	911 @ 10 1/2"	1884	Passed (48%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.003 @ 10 1/2"	0.058	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.007 @ 10 1/2"	0.087	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Trimmer - DF	1.50"	1.50"	1.50"	1138	420	840	2083	None
2 - Trimmer - DF	1.50"	1.50"	1.50"	1138	420	840	2083	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	1' 9" o/c	
Bottom Edge (Lu)	1' 9" o/c	

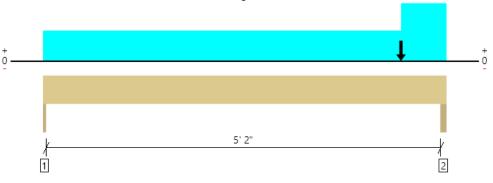
•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 1' 9"	N/A	4.2			
1 - Uniform (PSF)	0 to 1' 9"	22' 8 3/8"	25.0	-	30.0	
2 - Uniform (PSF)	0 to 1' 9"	9'	12.0	-	-	
3 - Uniform (PLF)	0 to 1' 9"	N/A	620.5	480.5	279.5	Linked from: Floor: Joist w/ Cant, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com Job Notes

Upper, 26 2 piece(s) 1 3/4" x 7 1/4" 1.55E TimberStrand® LSL

Overall Length: 5' 6 1/2"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3554 @ 0	4069 (1.50")	Passed (87%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	3972 @ 4' 8 1/4"	6031	Passed (66%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-lbs)	5271 @ 2' 11 9/16"	7156	Passed (74%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.093 @ 2' 9"	0.181	Passed (L/699)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.196 @ 2' 9"	0.271	Passed (L/332)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Trimmer - DF	1.50"	1.50"	1.50"	1865	1301	951	3554	None
2 - Trimmer - DF	3.00"	3.00"	2.52"	3600	1361	2953	6835	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 7" o/c	
Bottom Edge (Lu)	5' 7" o/c	
Bottom Edge (Lu)	5' 7" o/c	

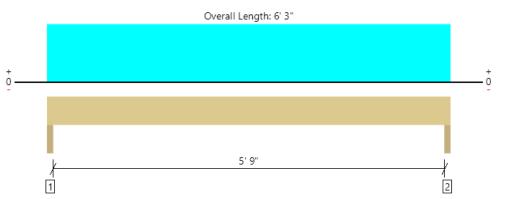
•Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 5' 6 1/2"	N/A	7.9			
1 - Uniform (PSF)	4' 11" to 5' 6 1/2"	22' 8 3/8"	25.0	-	30.0	
2 - Point (lb)	4' 11"	N/A	1628	-	1929	Linked from: 3, Support 1
3 - Uniform (PLF)	0 to 5' 6 1/2"	N/A	620.5	480.5	279.5	Linked from: Floor: Joist w/ Cant, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator
Javid Abdi
Atlas Consulting Engineers
(206) 427-7233
iaviddabdi@vahoo.com

Job Notes

Upper, 27 1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2911 @ 1 1/2"	3938 (3.00")	Passed (74%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1436 @ 1' 7"	5320	Passed (27%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	4192 @ 3' 1 1/2"	15557	Passed (27%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.020 @ 3' 1 1/2"	0.200	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.040 @ 3' 1 1/2"	0.300	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - DF	3.00"	3.00"	2.22"	1468	1443	2911	None
2 - Trimmer - DF	3.00"	3.00"	2.22"	1468	1443	2911	None

Bracing Intervals	Comments
6' 3" o/c	
6' 3" o/c	
	6' 3" o/c

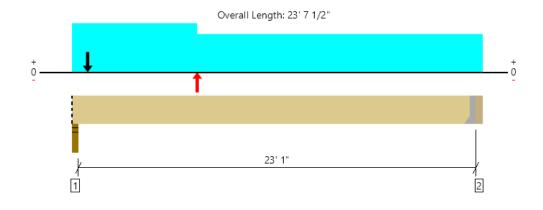
•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 6' 3"	N/A	8.2		
1 - Uniform (PSF)	0 to 6' 3"	11' 6 1/2"	40.0	40.0	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	

4/25/2023 6:25:06 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Mithalia Residence Page 18 / 67

Upper, 28 4 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5950 @ 23' 4"	7875 (1.50")	Passed (76%)		1.0 D - 0.525 E + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	5220 @ 1' 7"	21280	Passed (25%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	32533 @ 11' 5 1/4"	62228	Passed (52%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.641 @ 11' 2 3/16"	0.774	Passed (L/435)		1.0 D - 0.525 E + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.928 @ 11' 3 9/16"	1.160	Passed (L/300)		1.0 D - 0.525 E + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• -420 lbs uplift at support located at 23' 4". Strapping or other restraint may be required.

• Member should be side-loaded from both sides of the member or braced to prevent rotation.

	Bearing Length				Loads to Su			
Supports	Total	Available	Required	Dead	Floor Live	Seismic	Factored	Accessories
1 - Stud wall - DF	3.00"	3.00"	1.51"	2795	3343	2489/-2489	6609/-65	Blocking
2 - Hanger on 16" LVL beam	3.50"	Hanger ¹	1.50"	2204	3390	2489/-2489	6053/-420	See note 1

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments							
Top Edge (Lu)	12' 9" o/c								
Bottom Edge (Lu) 23' 4" o/c									
-Mavimum allowable brasing inter	-Maximum allowable brasing intervale based on applied land								

Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie										
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories				
2 - Face Mount Hanger	HGUS7.25/12	4.00"	N/A	56-10d	20-10d					

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 23' 4"	N/A	32.7			
1 - Uniform (PSF)	0 to 23' 7 1/2" (Top)	4' 1"	25.0	60.0		Default Load
2 - Uniform (PSF)	0 to 23' 7 1/2" (Top)	1'	40.0	40.0		Default Load
3 - Uniform (PSF)	0 to 7' 4" (Top)	10'	12.0	-		Default Load
4 - Point (Ib)	11" (Front)	N/A	-	-	9004	
5 - Point (Ib)	7' 4" (Front)	N/A	-	-	-9004	

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	

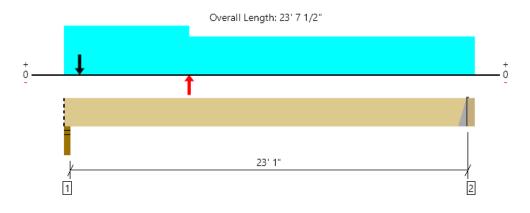
4/25/2023 6:25:06 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Mithalia Residence Page 19 / 67

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com Job Notes



4/25/2023 6:25:06 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Mithalia Residence Page 20 / 67

Upper, 28 (w_overstrength) 4 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

An excessive uplift of -2679 lbs at support located at 1 1/2" failed this product. An excessive uplift of -3034 lbs at support located at 23' 4" failed this product.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	7910 @ 23' 4"	7910 (1.51")	Passed (100%)		1.0 D - 0.525 E + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	5220 @ 1' 7"	21280	Passed (25%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	81931 @ 7' 4"	99565	Passed (82%)	1.60	1.0 D - 0.7 E (All Spans)
Live Load Defl. (in)	1.144 @ 10' 11 1/2"	0.774	Failed (L/243)		1.0 D - 0.525 E + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	1.431 @ 11' 15/16"	1.160	Failed (L/195)		1.0 D - 0.525 E + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

• Member should be side-loaded from both sides of the member or braced to prevent rotation.

	Bearing Length				Loads to Su			
Supports	Total	Available	Required	Dead	Floor Live	Seismic	Factored	Accessories
1 - Stud wall - DF	3.00"	3.00"	1.96"	2795	3343	6224/-6224	8570/- 2679	Blocking
2 - Hanger on 16" LVL beam	3.50"	Hanger ¹	1.51"	2204	3390	6224/-6224	8014/- 3034	See note 1

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments						
Top Edge (Lu)	5' 8" o/c							
Bottom Edge (Lu) 8' 5" o/c								
Maximum allowable bracing inten	Maximum allowable bracing intervals based on applied load							

mum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie										
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories				
2 - Top Mount Hanger	EGQ7.25-SDS3 H=15.938	6.00"	N/A	28-SDS25300	12-SDS25300					
- Defer to manufacturer notes and instructi		of all as many a shares								

Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 23' 4"	N/A	32.7			
1 - Uniform (PSF)	0 to 23' 7 1/2" (Top)	4' 1"	25.0	60.0	-	Default Load
2 - Uniform (PSF)	0 to 23' 7 1/2" (Top)	1'	40.0	40.0	-	Default Load
3 - Uniform (PSF)	0 to 7' 4" (Top)	10'	12.0	-		Default Load
4 - Point (Ib)	11" (Front)	N/A	-	-	22510	
5 - Point (Ib)	7' 4" (Front)	N/A	-	-	-22510	

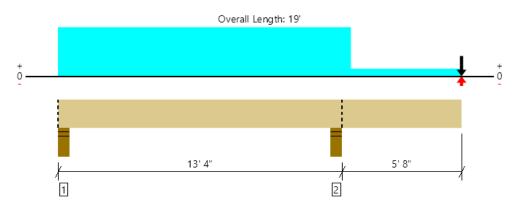
ForteWEB Software Operator	Job Notes	
Javid Abdi Atlas Consulting Engineers (206) 427-7233		
javiddabdi@yahoo.com		Weyerhaeuser

4/25/2023 6:25:06 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Mithalia Residence Page 21 / 67

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com Job Notes

4/25/2023 6:25:06 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Mithalia Residence Page 22 / 67

Upper, 29 3 piece(s) 1 3/4" x 20" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern) [Group]	5
Member Reaction (lbs)	16709 @ 13' 1 1/4"	18047 (5.50")) Passed (93%) 1.0 D + 0.525 E + 0.75 L + 0.75 Spans) [1]		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans) [1]	E
Shear (lbs)	8011 @ 15'	22943	Passed (35%)	5%) 1.15 1.0 D + 1.0 S (All Spans) [1]		E
Moment (Ft-lbs)	-46439 @ 13' 1 1/4"	81355	Passed (57%)	1.15	1.0 D + 1.0 S (All Spans) [1]	1 [
Live Load Defl. (in)	0.196 @ 19'	0.393	Passed (2L/720)		1.0 D + 0.525 E + 0.75 L + 0.75 S (Alt Spans) [1]	
Total Load Defl. (in)	0.424 @ 19'	0.590	Passed (2L/334)		1.0 D + 0.525 E + 0.75 L + 0.75 S (Alt Spans) [1]	

ystem : Floor Nember Type : Flush Beam Building Use : Residential uilding Code : IBC 2015 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/360) and TL (L/240).

• Overhang deflection criteria: LL (2L/360) and TL (2L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

• -706 lbs uplift at support located at 4". Strapping or other restraint may be required.

	Bearing Length			Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Factored	Accessories
1 - Stud wall - DF	5.50"	5.50"	1.50"	733	1999/-299	-1439	403/-403	2732/-782	Blocking
2 - Stud wall - DF	5.50"	5.50"	5.09"	10342	3039	4557	1276/-1276	16709	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	19' o/c					
Bottom Edge (Lu)	8' 8" o/c					
Maximum allowable bracing intervals based on applied load.						

applied

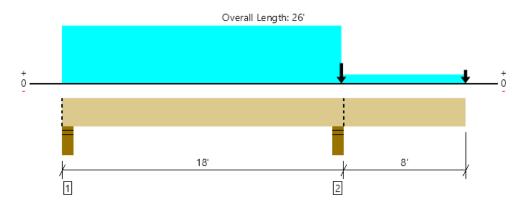
			Dead	Floor Live	Snow	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 19'	N/A	30.6				
1 - Uniform (PSF)	0 to 13' 9 1/2" (Top)	7' 5 1/4"	40.0	40.0	-	-	Default Load
2 - Uniform (PSF)	0 to 19' (Top)	9'	12.0	-	-	-	Default Load
3 - Point (lb)	19' (Top)	N/A	822	-	959	-	Linked from: 6, Support 2
4 - Point (lb)	19' (Front)	N/A	830	-	942	-	Linked from: 9, Support 1
5 - Point (lb)	19' (Front)	N/A	2686	636	1217	873/-873	Linked from: 35, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com



4/25/2023 6:25:06 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Mithalia Residence Page 23 / 67

Upper, 30 1 piece(s) 5 1/2" x 15" 24F-V8 DF Glulam

Right cantilever exceeds the maximum braced cantilever length of 7'.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	15397 @ 17' 9 1/4"	18906 (5.50")	Passed (81%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	6832 @ 16' 3 1/2"	14575	Passed (47%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	21752 @ 8' 1 1/16"	41250	Passed (53%)	1.00	1.0 D + 1.0 L (Alt Spans)
Neg Moment (Ft-Ibs)	-27854 @ 17' 9 1/4"	30921	Passed (90%)	1.00	1.0 D + 1.0 L (Alt Spans)
Live Load Defl. (in)	0.687 @ 26'	0.549	Failed (2L/288)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.722 @ 26'	0.823	Passed (2L/274)		1.0 D + 1.0 L (Alt Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

Deflection criteria: LL (L/360) and TL (L/240).

• Overhang deflection criteria: LL (2L/360) and TL (2L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Moment capacity over cantilever support 2 has been reduced by 25% to lessen the effects of buckling.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 15' 6 3/16".

• Critical negative moment adjusted by a volume factor of 1.00 that was calculated using length L = 15' 8 13/16".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• Applicable calculations are based on NDS.

	Bearing Length				Loads to Sup			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - DF	5.50"	5.50"	1.70"	3157	2693/-902	-	5850	Blocking
2 - Stud wall - DF	5.50"	5.50"	4.48"	9114	6133	2245	15397	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	26' o/c	
Bottom Edge (Lu)	26' o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 26'	N/A	20.0			
1 - Uniform (PSF)	0 to 18' (Top)	7' 5 1/4"	40.0	40.0	-	Default Load
2 - Uniform (PSF)	0 to 26' (Top)	9'	12.0	-	-	Default Load
3 - Point (lb)	18' (Top)	N/A	822	-	959	Linked from: 6, Support 2
4 - Point (lb)	18' (Front)	N/A	1189	-	1286	Linked from: 10, Support 1
5 - Point (lb)	26' (Front)	N/A	946	1910	-	Linked from: 34, Support 1
6 - Point (lb)	18' (Front)	N/A	629	659	-	Linked from: 31, Support 1

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	

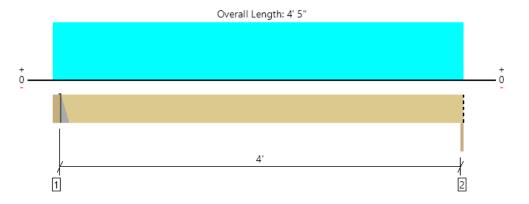
4/25/2023 6:25:06 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Mithalia Residence Page 24 / 67

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com Job Notes



4/25/2023 6:25:06 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Mithalia Residence Page 25 / 67

Upper, 31 1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1131 @ 4' 5"	1641 (1.50")	Passed (69%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	400 @ 1' 7 1/2"	5320	Passed (8%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1166 @ 2' 4 1/4"	15557	Passed (7%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.004 @ 2' 4 1/4"	0.138	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.008 @ 2' 4 1/4"	0.206	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on 16" DF beam	3.50"	Hanger ¹	1.50"	629	659	1288	See note 1
2 - Beam - DF	1.50"	1.50"	1.50"	553	578	1131	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	4' 2" o/c					
Bottom Edge (Lu)	4' 2" o/c					
•Maximum allowable bracing intervals based on applied load.						

•Maximum allowable bracing intervals based on applied load

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Top Mount Hanger	ITS1.81/16	2.00"	4-10dx1.5	4-10dx1.5	4-10dx1.5	

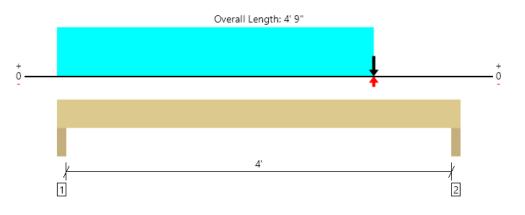
• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	3 1/2" to 4' 5"	N/A	8.2		
1 - Uniform (PSF)	0 to 4' 5" (Top)	4'	25.0	60.0	Default Load
2 - Uniform (PSF)	0 to 4' 5" (Top)	1'	40.0	40.0	Default Load
3 - Uniform (PSF)	0 to 4' 5" (Top)	10'	12.0	-	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator Job Notes Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com

4/25/2023 6:25:06 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Mithalia Residence Page 26 / 67

Upper, 32 2 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern) [Group]	s
Member Reaction (lbs)	10829 @ 4' 6"	11813 (4.50")	Passed (92%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans) [1]	B
Shear (lbs)	3327 @ 3' 1/2"	10640	Passed (31%)	1.00	1.0 D + 1.0 L (All Spans) [1]	В
Moment (Ft-lbs)	7515 @ 3' 8 3/4"	35781	Passed (21%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans) [1]	7 C
Live Load Defl. (in)	0.012 @ 3' 8 3/4"	0.142	Passed (L/999+)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans) [1]	
Total Load Defl. (in)	0.023 @ 2' 7"	0.213	Passed (L/999+)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans) [1]	

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	В	earing Leng	th	Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Factored	Accessories
1 - Trimmer - DF	4.50"	4.50"	1.54"	2066	1679	633	451/-451	4037	None
2 - Trimmer - DF	4.50"	4.50"	4.13"	5042	3433	2857	2038/-2038	10829	None

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	4' 9" o/c						
Bottom Edge (Lu)	4' 9" o/c						
-Maximum allowable brasing inter	Maximum allowable bracine intervile braced on applied land						

Maximum allowable bracing intervals based on applied load.

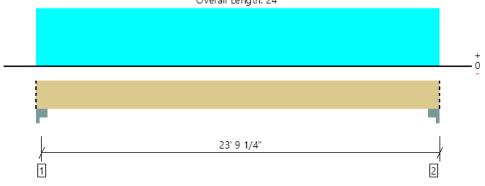
			Dead	Floor Live	Snow	Seismic	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(1.15)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 4' 9"	N/A	16.3				
1 - Uniform (PSF)	0 to 3' 8 3/4"	11' 6 1/2"	40.0	40.0	-		
2 - Point (lb)	3' 8 3/4"	N/A	1916	-	2204	-	Linked from: 2, Support 2
3 - Point (lb)	3' 8 3/4"	N/A	1189	-	1286	-	Linked from: 10, Support 1
4 - Point (lb)	3' 8 3/4"	N/A	2204	3390	-	2489/-2489	Linked from: 28, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com Job Notes


4/25/2023 6:25:06 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Mithalia Residence Page 27 / 67

Upper, 33 1 piece(s) 5 1/2" x 15" 24F-V4 DF Glulam

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4321 @ 4"	19663 (5.50")	Passed (22%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	3706 @ 1' 8 1/2"	14575	Passed (25%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	24504 @ 12'	39636	Passed (62%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.575 @ 12'	0.778	Passed (L/487)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.862 @ 12'	1.167	Passed (L/325)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

· Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

0

• Critical positive moment adjusted by a volume factor of 0.96 that was calculated using length L = 23' 4".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Column Cap - steel	5.50"	5.50"	1.50"	1441	2880	4321	Blocking
2 - Column Cap - steel	5.50"	5.50"	1.50"	1441	2880	4321	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	24' o/c						
Bottom Edge (Lu)	24' o/c						
•Maximum allowable bracing interv	Maximum allowable bracing intervals based on applied load						

m allowable bracing intervals based on applied load

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 24'	N/A	20.0		
1 - Uniform (PSF)	0 to 24' (Top)	4'	25.0	60.0	Default Load

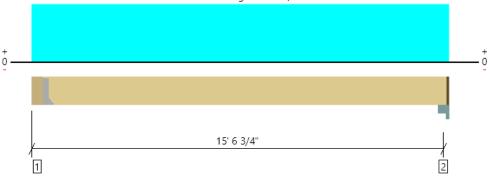
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com

Job Notes



4/25/2023 6:25:06 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Mithalia Residence Page 28 / 67

Upper, 34 1 piece(s) 5 1/2" x 15" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

				1	
Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2700 @ 5 1/2"	5363 (1.50")	Passed (50%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2250 @ 1' 8 1/2"	14575	Passed (15%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	10126 @ 7' 11 1/2"	41250	Passed (25%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.098 @ 7' 11 1/2"	0.500	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.147 @ 7' 11 1/2"	0.750	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 15° .

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on 15" GLB beam	5.50"	Hanger ¹	1.50"	946	1910	2856	See note 1
2 - Column Cap - steel	5.50"	4.25"	1.50"	938	1880	2818	1 1/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	15' 3" o/c						
Bottom Edge (Lu)	15' 3" o/c						
Maximum allowable bussing integrals based on applied load							

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie											
Support Model Seat Length Top Fasteners Face Fasteners Member Fasteners Accessories											
1 - Face Mount Hanger	HUC612	2.50"	N/A	22-10d	8-10d						

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

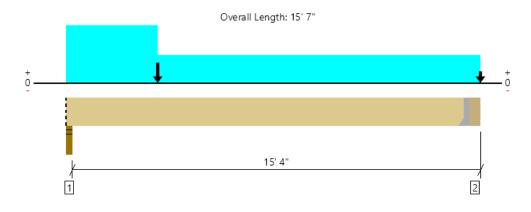
			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	5 1/2" to 15' 8 1/4"	N/A	20.0		
1 - Uniform (PSF)	0 to 15' 9 1/2" (Top)	4'	25.0	60.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com



4/25/2023 6:25:06 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Mithalia Residence Page 29 / 67

Upper, 35 2 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	S
Member Reaction (lbs)	5540 @ 1 1/2"	6563 (3.00")	Passed (84%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)	N B
Shear (lbs)	4731 @ 1' 7"	17024	Passed (28%)	1.60	1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)	E
Moment (Ft-lbs)	9917 @ 6' 9 1/2"	31114	Passed (32%)	1.00	1.0 D + 1.0 L (All Spans)	
Live Load Defl. (in)	0.140 @ 6' 11"	0.501	Passed (L/999+)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)	
Total Load Defl. (in)	0.287 @ 7' 2 1/8"	0.751	Passed (L/627)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)	

ystem : Floor Nember Type : Flush Beam Building Use : Residential uilding Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• -508 lbs uplift at support located at 1 1/2". Strapping or other restraint may be required.

	В	Bearing Length			Loads				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Factored	Accessories
1 - Stud wall - DF	3.00"	3.00"	2.53"	2611	611	1219	2964/-2964	5540/-508	Blocking
2 - Hanger on 16" LVL beam	5.25"	Hanger ¹	1.50"	2686	636	1217	873/-873	4534	See note 1

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	11' 7" o/c	
Bottom Edge (Lu)	15' 2" o/c	
•Maximum allowable bracing interv	als based on applied load.	

acing intervals based on applied load

Connector: Simpson Strong-Tie								
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories		
2 - Face Mount Hanger	HUC412	2.50"	N/A	16-16d	6-10d			

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Snow	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 15' 1 3/4"	N/A	16.3				
1 - Uniform (PSF)	0 to 15' 7" (Top)	2'	40.0	40.0	-	-	Default Load
2 - Uniform (PSF)	0 to 15' 7" (Top)	9'	12.0	-	-	-	Default Load
3 - Point (Ib)	3' 6 1/2" (Front)	N/A	-	-	-	3837	
4 - Point (lb)	15' 7" (Top)	N/A	830	-	942	-	Linked from: 9, Support 1
5 - Point (lb)	3' 6 1/2" (Top)	N/A	830	-	942	-	Linked from: 9, Support 2
6 - Uniform (PSF)	0 to 3' 6 1/2" (Top)	5' 2 3/8"	25.0	-	30.0	-	Default Load

ForteWEB Software Operator	Job Notes	
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com		

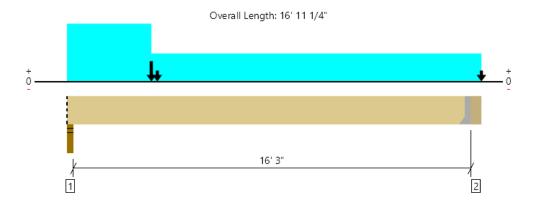
4/25/2023 6:25:06 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Mithalia Residence Page 30 / 67

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com Job Notes


4/25/2023 6:25:06 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Mithalia Residence Page 31 / 67

Upper, 35 (w_overstrength) 2 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

Support 1 failed reaction check due to insufficient bearing capacity.

An excessive uplift of -3710 lbs at support located at 1 1/2" failed this product.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	8199 @ 1 1/2"	6563 (3.00")	6563 (3.00") Failed (125%) 1.0 D + 0.525 E + 0.7 Spans)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	7591 @ 1' 7"	17024	Passed (45%)	1.60	1.0 D + 0.7 E (All Spans)
Moment (Ft-lbs)	25684 @ 3' 9 1/2"	49783	Passed (52%)	1.60	1.0 D + 0.7 E (All Spans)
Live Load Defl. (in)	0.308 @ 7' 4 15/16"	0.546	Passed (1/639) 1.0 D + 0.525 E + 0.75 L		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.506 @ 7' 8 1/4"	0.819	Passed (L/388)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Factored	Accessories
1 - Stud wall - DF	3.00"	3.00"	3.75"	2757	665	1228	7663/-7663	8199/- 3710	Blocking
2 - Hanger on 16" LVL beam	5.25"	Hanger ¹	1.50"	2817	690	1209	2020/-2020	5302	See note 1

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	6' 8" o/c				
Bottom Edge (Lu)	13' 6" o/c				
Maximum allowable bracing intervals based on applied load.					

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories			
2 - Face Mount Hanger	Connector not found	N/A	N/A	N/A	N/A				

Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Snow	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 16' 6"	N/A	16.3				
1 - Uniform (PSF)	0 to 16' 11 1/4" (Top)	2'	40.0	40.0	-	-	Default Load
2 - Uniform (PSF)	0 to 16' 11 1/4" (Top)	9'	12.0	-	-	-	Default Load
3 - Point (lb)	3' 6 1/2" (Front)	N/A	-	-	-	9683	
4 - Point (lb)	16' 11 1/4" (Top)	N/A	830	-	942	-	Linked from: 9, Support 1
5 - Point (lb)	3' 9 1/2" (Top)	N/A	830	-	942	-	Linked from: 9, Support 2
6 - Uniform (PSF)	0 to 3' 6 1/2" (Top)	5' 2 3/8"	25.0	-	30.0	-	Default Load

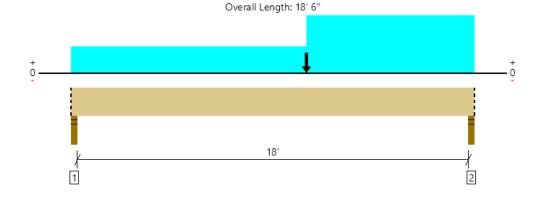
ForteWEB Software Operator	Job Notes	
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com		1

4/25/2023 6:25:06 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Mithalia Residence Page 32 / 67

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com Job Notes

4/25/2023 6:25:06 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Mithalia Residence Page 33 / 67

Upper, 36 2 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4714 @ 18' 4 1/2"	6563 (3.00")	Passed (72%)		1.0 D + 0.45 W + 0.75 L + 0.75 Lr (All Spans)
Shear (lbs)	3289 @ 16' 11"	13300	Passed (25%)	1.25	1.0 D + 1.0 Lr (All Spans)
Moment (Ft-lbs)	21381 @ 10' 9 1/2"	49783	Passed (43%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 Lr (All Spans)
Live Load Defl. (in)	0.291 @ 9' 7 3/4"	0.608	Passed (L/752)		1.0 D + 0.45 W + 0.75 L + 0.75 Lr (All Spans)
Total Load Defl. (in)	0.536 @ 9' 6 3/4"	0.913	Passed (L/408)		1.0 D + 0.45 W + 0.75 L + 0.75 Lr (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length				Loads to Su			
Supports	Total	Available	Required	Dead	Roof Live	Wind	Factored	Accessories
1 - Stud wall - DF	3.00"	3.00"	1.51"	1771	1078	1594	3297	Blocking
2 - Stud wall - DF	3.00"	3.00"	2.16"	2363	1789	2243	4714	Blocking
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.								

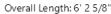
Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	8' 1" o/c						
Bottom Edge (Lu)	18' 6" o/c						
Maximum allowable bracing intervals based on applied load							

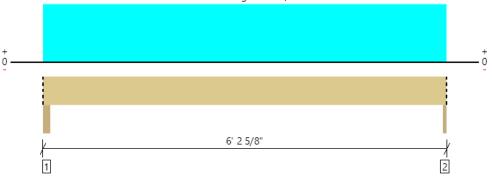
•Maximum allowable bracing intervals based on applied load.

			Dead	Roof Live	Wind	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(non-snow: 1.25)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 18' 6"	N/A	16.3			
1 - Uniform (PSF)	0 to 18' 6" (Top)	3'	15.0	30.0	-	Default Load
2 - Uniform (PSF)	0 to 18' 6" (Top)	9'	12.0	-	-	Default Load
3 - Point (lb)	10' 9 1/2" (Front)	N/A	-	-	3837	
4 - Uniform (PSF)	10' 9 1/2" to 18' 6" (Top)	5' 2 3/8"	25.0	30.0	-	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com Job Notes

Upper, 37 3 piece(s) 2 x 8 DF No.1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2226 @ 6' 2 3/8"	4922 (1.75")	Passed (45%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1676 @ 10 3/4"	3915	Passed (43%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	3334 @ 3' 2 3/16"	3942	Passed (85%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.050 @ 3' 2 3/16"	0.151	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.090 @ 3' 2 3/16"	0.302	Passed (L/806)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories	
1 - Beam - DF	3.50"	3.50"	1.50"	1039	1294	2333	Blocking	
2 - Beam - DF	1.75"	1.75"	1.50"	991	1235	2226	Blocking	
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.								

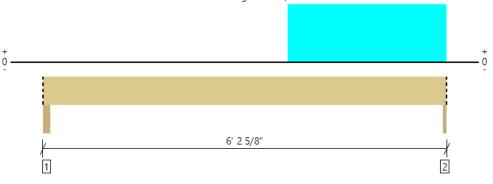
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 3" o/c	
Bottom Edge (Lu)	6' 3" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 6' 2 5/8"	N/A	8.3		
1 - Uniform (PSF)	0 to 6' 2 5/8" (Front)	4' 3 1/4"	40.0	40.0	
2 - Uniform (PSF)	3' 9 1/4" to 6' 2 5/8" (Front)	5' 10 3/4"	25.0	40.0	
3 - Uniform (PSF)	0 to 3' 9 1/4" (Front)	5' 10 3/4"	25.0	40.0	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Jo
Javid Abdi	
Atlas Consulting Engineers	
(206) 427-7233	
iaviddabdi@vahoo.com	

Upper, 38 3 piece(s) 2 x 6 DF No.1

Overall Length: 6' 2 5/8"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	tion (lbs) 943 @ 6' 2 3/8"		Passed (19%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	655 @ 5' 7 3/8"	2970	Passed (22%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	911 @ 4' 2 15/16"	2458	Passed (37%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.023 @ 3' 5 9/16"	0.151	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.048 @ 3' 5 7/16"	0.302	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Beam - DF	3.50"	3.50"	1.50"	135	115	250	Blocking
2 - Beam - DF	1.75"	1.75"	1.50"	481	462	943	Blocking
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.							

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 3" o/c	
Bottom Edge (Lu)	6' 3" o/c	

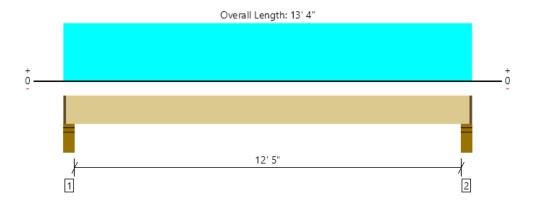
•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 6' 2 5/8"	N/A	6.3		
1 - Uniform (PSF)	3' 9 1/4" to 6' 2 5/8" (Front)	5' 10 3/4"	40.0	40.0	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	

4/25/2023 6:25:06 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Mithalia Residence Page 36 / 67

Main, Garage Joists 1 piece(s) 1 3/4" x 11 1/4" 2.0E Microllam® LVL @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1006 @ 4 1/2"	4648 (4.25")	Passed (22%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	808 @ 1' 4 3/4"	3741	Passed (22%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	3035 @ 6' 8"	8391	Passed (36%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.071 @ 6' 8"	0.315	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.205 @ 6' 8"	0.629	Passed (L/737)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	61	40	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 4% increase in the moment capacity has been added to account for repetitive member usage.

• A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	5.50"	4.25"	1.50"	667	356	1022	1 1/4" Rim Board
2 - Stud wall - DF	5.50"	4.25"	1.50"	667	356	1022	1 1/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	13' 2" o/c	
Bottom Edge (Lu)	13' 2" o/c	

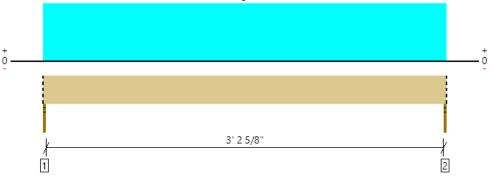
•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 13' 4"	16"	75.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 Javiddabdi@yahoo.com Job Notes

Main, 51 2 piece(s) 2 x 8 DF No.1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2692 @ 0	2813 (1.50")	Passed (96%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1560 @ 8 3/4"	2610	Passed (60%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2335 @ 1' 8 13/16"	2628	Passed (89%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.016 @ 1' 8 13/16"	0.087	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.031 @ 1' 8 13/16"	0.173	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	1.50"	1.50"	1.50"	1351	1341	2692	Blocking
2 - Stud wall - DF	1.50"	1.50"	1.50"	1351	1341	2692	Blocking
Blocking Panels are assumed to carry no load	s applied dire	ctly above the	m and the ful	l load is appli	ed to the mer	nber beina d	esianed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 6" o/c	
Bottom Edge (Lu)	3' 6" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 5 5/8"	N/A	5.5		
1 - Uniform (PSF)	0 to 3' 5 5/8" (Top)	19' 4"	40.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 Javiddabdi@yahoo.com	

Main, 52 1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3116 @ 1 1/2"	3281 (3.00")	Passed (95%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1636 @ 1' 7"	5320	Passed (31%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	4811 @ 3' 4"	15557	Passed (31%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.025 @ 3' 4"	0.160	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.050 @ 3' 4"	0.321	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories	
1 - Stud wall - DF	3.00"	3.00"	2.85"	1572	1544	3116	Blocking	
2 - Stud wall - DF	3.00"	3.00"	2.85"	1572	1544	3116	Blocking	
Blocking Papels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed								

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 8" o/c	
Bottom Edge (Lu)	6' 8" o/c	

•Maximum allowable bracing intervals based on applied load.

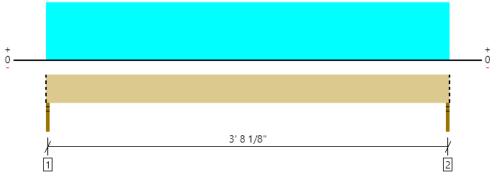
			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 6' 8"	N/A	8.2		
1 - Uniform (PSF)	0 to 6' 8" (Top)	11' 7"	40.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	



4/25/2023 6:25:06 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Mithalia Residence Page 39 / 67

Main, 53 2 piece(s) 2 x 8 DF No.1

Overall Length: 3' 9 7/8"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1569 @ 1/4"	3281 (1.75")	Passed (48%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	953 @ 9"	2610	Passed (37%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-Ibs)	1467 @ 1' 10 15/16"	2628	Passed (56%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.013 @ 1' 10 15/16"	0.095	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.023 @ 1' 10 15/16"	0.189	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories	
1 - Stud wall - DF	1.75"	1.75"	1.50"	684	886	1569	Blocking	
2 - Stud wall - DF	1.75"	1.75"	1.50"	684	886	1569	Blocking	
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.								

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 10" o/c	
Bottom Edge (Lu)	3' 10" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 9 7/8"	N/A	5.5		
1 - Uniform (PSF)	0 to 3' 9 7/8" (Top)	4' 2"	40.0	40.0	Default Load
2 - Uniform (PSF)	0 to 3' 9 7/8" (Top)	7' 5"	25.0	40.0	Default Load

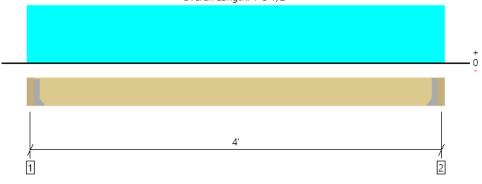
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

es

ForteWEB Software Operator	Job Not
Javid Abdi	
Atlas Consulting Engineers	
(206) 427-7233	
javiddabdi@yahoo.com	



Main, 54 1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1115 @ 3 1/2"	1969 (1.50")	Passed (57%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	313 @ 1' 7 1/2"	5320	Passed (6%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1034 @ 2' 1 3/4"	15557	Passed (7%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.003 @ 2' 1 3/4"	0.093	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.006 @ 2' 1 3/4"	0.185	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

0

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on 16" DF beam	3.50"	Hanger ¹	1.50"	652	637	1288	See note 1
2 - Hanger on 16" DF beam	3.50"	Hanger ¹	1.50"	652	637	1288	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	3' 9" o/c				
Bottom Edge (Lu)	3' 9" o/c				
-Maximum alloughle brasing intervals based on applied land					

Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories			
1 - Face Mount Hanger	HUCQ1.81/11-SDS	3.00"	N/A	10-SDS25134	4-SDS25134				
2 - Face Mount Hanger	IUS1.81/11.88	2.00"	N/A	10-10d	2-10dx1.5				

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	3 1/2" to 4'	N/A	8.2		
1 - Uniform (PSF)	0 to 4' 3 1/2" (Top)	7' 5"	40.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

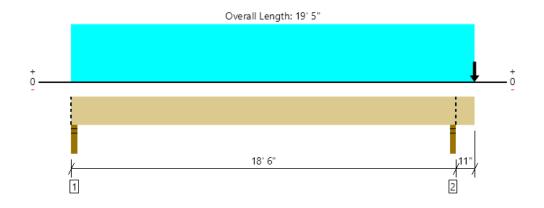
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

 ForteWEB Software Operator
 Job

 Javid Abdi
 Jatias Consulting Engineers

 (206) 427-7233
 javiddabdi@yahoo.com

Job Notes



4/25/2023 6:25:06 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Mithalia Residence Page 41 / 67

Main, 55 1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2771 @ 18' 4 1/2"	3281 (3.00")	Passed (84%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1137 @ 16' 11"	5320	Passed (21%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	5402 @ 8' 11 5/8"	15557	Passed (35%)	1.00	1.0 D + 1.0 L (Alt Spans)
Live Load Defl. (in)	0.181 @ 9' 3"	0.456	Passed (L/999+)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.291 @ 9' 1 13/16"	0.913	Passed (L/753)		1.0 D + 1.0 L (Alt Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Overhang deflection criteria: LL (2L/480) and TL (2L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories	
1 - Stud wall - DF	3.00"	3.00"	1.50"	499	740/-39	1239	Blocking	
2 - Stud wall - DF	3.00"	3.00"	2.53"	1282	1489	2771	Blocking	
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.								

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	10' 5" o/c	
Bottom Edge (Lu)	19' 5" o/c	

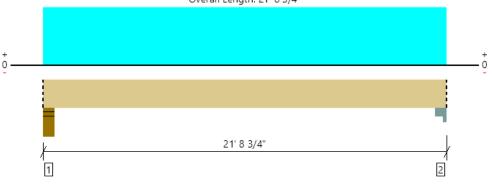
•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 19' 5"	N/A	8.2		
1 - Uniform (PSF)	0 to 19' 5" (Top)	2'	25.0	40.0	Default Load
2 - Point (lb)	19' 5" (Front)	N/A	652	637	Linked from: 54, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job
Javid Abdi Atlas Consulting Engineers	
(206) 427-7233	
javiddabdi@yahoo.com	



Main, 56 1 piece(s) 3 1/2" x 12" 24F-V4 DF Glulam

Overall Length: 21' 8 3/4"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1958 @ 4"	12031 (5.50")	Passed (16%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1695 @ 1' 5 1/2"	7420	Passed (23%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	9993 @ 10' 10 3/8"	16800	Passed (59%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.586 @ 10' 10 3/8"	0.702	Passed (L/432)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.880 @ 10' 10 3/8"	1.053	Passed (L/287)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 21' 3/4".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	5.50"	5.50"	1.50"	654	1304	1958	Blocking
2 - Column Cap - steel	5.50"	5.50"	1.50"	654	1304	1958	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	21' 9" o/c				
Bottom Edge (Lu)	21' 9" o/c				
Maximum allowable bracing intervals based on applied load					

Maximum allowable bracing intervals based on applied load.

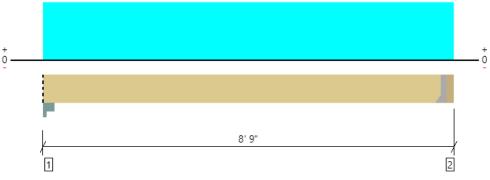
			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 21' 8 3/4"	N/A	10.2		
1 - Uniform (PSF)	0 to 21' 8 3/4" (Top)	2'	25.0	60.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 Javiddabd@yahoo.com Job Notes


4/25/2023 6:25:06 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Mithalia Residence Page 43 / 67

Main, 57 1 piece(s) 3 1/2" x 12" 24F-V4 DF Glulam

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	732 @ 8' 5 1/2"	3413 (1.50")	Passed (21%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	552 @ 7' 5 1/2"	7420	Passed (7%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	1487 @ 4' 4 3/4"	16800	Passed (9%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.013 @ 4' 4 3/4"	0.203	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.019 @ 4' 4 3/4"	0.406	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 8' 1 1/2''.

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Column Cap - steel	5.50"	5.50"	1.50"	265	528	792	Blocking
2 - Hanger on 12" LVL beam	3.50"	Hanger ¹	1.50"	259	523	782	See note 1

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	8' 6" o/c						
Bottom Edge (Lu)	8' 6" o/c						
Maximum allowable bracing intervale based on applied load							

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie									
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories			
2 - Face Mount Hanger	LUS410	2.00"	N/A	8-10dx1.5	6-10d				

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 8' 5 1/2"	N/A	10.2		
1 - Uniform (PSF)	0 to 8' 9" (Top)	2'	25.0	60.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

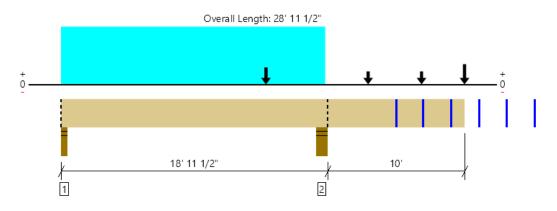
 ForteWEB Software Operator
 Job Notes

 Javid Abdi

 Atlas Consulting Engineers

 (206) 427-7233

 javiddabdi@yahoo.com



4/25/2023 6:25:06 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Mithalia Residence Page 44 / 67

Main, 58 1 piece(s) 5 1/2" x 16" 24F-V8 DF Glulam

Right cantilever exceeds the maximum braced cantilever length of 7'.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	7672 @ 18' 8 3/4"	18906 (5.50")	Passed (41%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	3856 @ 17' 2"	15547	Passed (25%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	5263 @ 7' 8 15/16"	46857	Passed (11%)	1.00	1.0 D + 1.0 L (Alt Spans)
Neg Moment (Ft-lbs)	-26824 @ 18' 8 3/4"	32901	Passed (82%)	1.00	1.0 D + 1.0 L (Alt Spans)
Live Load Defl. (in)	0.772 @ 28' 11 1/2"	0.682	Failed (2L/318)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	1.096 @ 28' 11 1/2"	1.023	Failed (2L/224)		1.0 D + 1.0 L (Alt Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Overhang deflection criteria: LL (2L/360) and TL (2L/240).

• Right cantilever length exceeds 1/3 member length or 1/2 back span length. Additional bracing should be considered.

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Moment capacity over cantilever support 2 has been reduced by 25% to lessen the effects of buckling.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 14' 11".

• Critical negative moment adjusted by a volume factor of 0.93 that was calculated using length L = 28' 10".

• -345 lbs uplift at support located at 1 1/2". Strapping or other restraint may be required.

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• Applicable calculations are based on NDS.

Bearing Length			Luaus	to Supports	j	
Total	Available	Required	Dead	Floor Live	Factored	Accessories
3.00"	3.00"	1.50"	513	892/-858	1404/-345	Blocking
5.50"	5.50"	2.23"	3481	4191	7672	Blocking
	3.00" 5.50"	3.00" 3.00" 5.50" 5.50"	3.00" 3.00" 1.50" 5.50" 5.50" 2.23"	3.00" 3.00" 1.50" 513 5.50" 5.50" 2.23" 3481	3.00" 3.00" 1.50" 513 892/-858 5.50" 5.50" 2.23" 3481 4191	3.00" 3.00" 513 892/-858 1404/-345

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	29' o/c	
Bottom Edge (Lu)	29' o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 28' 11 1/2"	N/A	21.4		
1 - Uniform (PSF)	0 to 18' 11 1/2" (Top)	2'	40.0	40.0	Default Load
2 - Point (lb)	14' 8 1/2" (Front)	N/A	652	637	Linked from: 54, Support 1
3 - Point (lb)	22' 1/2" (Front)	N/A	259	523	Linked from: 57, Support 2
4 - Point (lb)	25' 10 1/2" (Front)	N/A	259	523	Linked from: 57, Support 2
5 - Point (lb)	28' 11 1/2" (Front)	N/A	688	1025	Linked from: 72, Support 1

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	

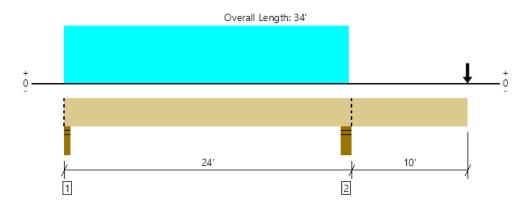
	Shear (lbs)			Moment (Ft-Ibs)			Deflect	ion (in)	
Location Analysis	Actual	Allowed	LDF	Actual	Allowed	LDF	Live Load	Total	Comments
1 - 24' 1"	2599	15547	1.00	-10006	44861	1.00	0.361	0.502	
2 - 26'	1776	15547	1.00	-5161	44861	1.00	0.518	0.728	
3 - 28'	1733	15547	1.00	-1651	44861	1.00	0.689	0.976	
4 - 30'	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
5 - 32'	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
6 - 34'	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com Job Notes



4/25/2023 6:25:06 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Mithalia Residence Page 46 / 67

Main, 59 1 piece(s) 5 1/2" x 16" 24F-V4 DF Glulam

Right cantilever exceeds the maximum braced cantilever length of 7'.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4540 @ 23' 9 1/4"	18906 (5.50")	Passed (24%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2342 @ 22' 2 1/2"	15547	Passed (15%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	6895 @ 9' 8"	45716	Passed (15%)	1.00	1.0 D + 1.0 L (Alt Spans)
Neg Moment (Ft-Ibs)	-18645 @ 23' 9 1/4"	25074	Passed (74%)	1.00	1.0 D + 1.0 L (Alt Spans)
Live Load Defl. (in)	0.619 @ 34'	0.682	Passed (2L/396)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.891 @ 34'	1.023	Passed (2L/276)		1.0 D + 1.0 L (Alt Spans)

Deflection criteria: LL (L/360) and TL (L/240).

Overhang deflection criteria: LL (2L/360) and TL (2L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Moment capacity over cantilever support 2 has been reduced by 25% to lessen the effects of buckling.

• Critical positive moment adjusted by a volume factor of 0.97 that was calculated using length L = $19' \ 1 \ 1/16''$.

Critical negative moment adjusted by a volume factor of 0.92 that was calculated using length L = 32' 3 13/16".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

• Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories	
1 - Stud wall - DF	3.00"	3.00"	1.50"	508	956/-444	1464	Blocking	
2 - Stud wall - DF	5.50"	5.50"	1.50"	2107	2433	4540	Blocking	
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.								

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	34' o/c				
Bottom Edge (Lu)	34' o/c				

•Maximum allowable bracing intervals based on applied load.

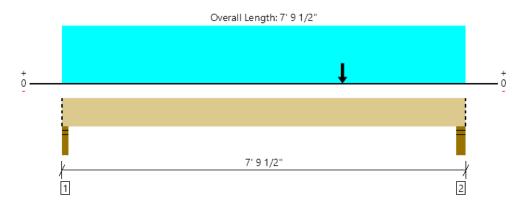
			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 34'	N/A	21.4		
1 - Uniform (PSF)	0 to 24' (Top)	2'	25.0	40.0	Default Load
2 - Point (Ib)	34' (Front)	N/A	688	1025	Linked from: 72, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com


4/25/2023 6:25:06 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Mithalia Residence Page 47 / 67

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

Main, 60

3 piece(s) 1 3/4" x 9 1/4" 2.0E Microllam® LVL

An excessive uplift of -1620 lbs at support located at 7' 6 1/2" failed this product.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)	S
Member Reaction (lbs)	8304 @ 1 1/2"	9844 (3.00")	Passed (84%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)	B
Shear (lbs)	5330 @ 1' 1/4"	9227	Passed (58%)	1.00	1.0 D + 1.0 L (All Spans)	B
Moment (Ft-Ibs)	13031 @ 3' 10"	16806	Passed (78%)	1.00	1.0 D + 1.0 L (All Spans)	1 [
Live Load Defl. (in)	0.183 @ 3' 11 7/8"	0.247	Passed (L/486)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)	
Total Load Defl. (in)	0.290 @ 3' 11 1/8"	0.371	Passed (L/307)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)	

ystem : Floor Member Type : Flush Beam uilding Use : Residential uilding Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Factored	Accessories
1 - Stud wall - DF	3.00"	3.00"	2.53"	3583	3682	1071	2203/-2203	8304	Blocking
2 - Stud wall - DF	4.50"	4.50"	3.13"	3700	3802	1106	5485/-5485	10261/- 1620	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	7' 10" o/c					
Bottom Edge (Lu)	7' 10" o/c					
Maximum allowable bracing intervals based on applied load						

Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 7' 9 1/2"	N/A	14.2				
1 - Uniform (PSF)	0 to 7' 9 1/2" (Top)	12'	25.0	40.0	-	-	Default Load
2 - Point (Ib)	5' 5" (Front)	N/A	-	-	-	7688	
3 - Uniform (PLF)	0 to 7' 9 1/2" (Front)	N/A	620.5	480.5	279.5	-	Linked from: Floor: Joist w/ Cant, Support 2

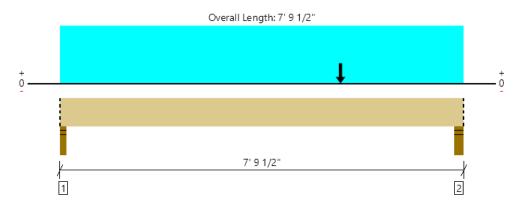
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com

4/25/2023 6:25:06 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Mithalia Residence Page 48 / 67



Main, 60 (w_overstrength)

3 piece(s) 1 3/4" x 9 1/4" 2.0E Microllam® LVL

An excessive uplift of -1705 lbs at support located at 1 $1/2^{\prime\prime}$ failed this product.

An excessive uplift of -7379 lbs at support located at 7' 6 1/2" failed this product

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	10039 @ 1 1/2"	9844 (3.00")	Passed (102%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	12444 @ 6' 7 3/4"	14763	Passed (84%)	1.60	1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Moment (Ft-lbs)	25784 @ 5' 4 5/8"	26889	Passed (96%)	1.60	1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.299 @ 4' 1 1/16"	0.247	Failed (L/298)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.405 @ 4' 3/16"	0.371	Failed (L/220)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)

ystem : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Factored	Accessories
1 - Stud wall - DF	3.00"	3.00"	3.06"	3583	3682	1071	5507/-5507	10039/- 1705	Blocking
2 - Stud wall - DF	4.50"	4.50"	4.44"	3700	3802	1106	13713/- 13713	14580/- 7379	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	3' 10" o/c						
Bottom Edge (Lu)	7' 10" o/c						
Maximum allowable bracing inten	Maximum allowable bracing intervals based on applied load						

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 7' 9 1/2"	N/A	14.2				
1 - Uniform (PSF)	0 to 7' 9 1/2" (Top)	12'	25.0	40.0	-	-	Default Load
2 - Point (Ib)	5' 5" (Front)	N/A	-	-	-	19220	
3 - Uniform (PLF)	0 to 7' 9 1/2" (Front)	N/A	620.5	480.5	279.5	-	Linked from: Floor: Joist w/ Cant, Support 2

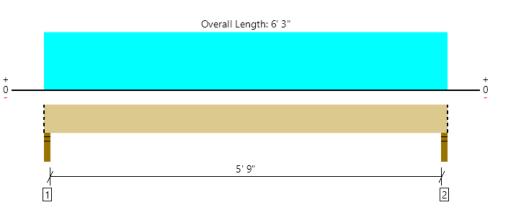
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Job Notes

ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com



4/25/2023 6:25:06 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Mithalia Residence Page 49 / 67

Main, 61A 1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2368 @ 1 1/2"	3281 (3.00")	Passed (72%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1168 @ 1' 7"	5320	Passed (22%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	3410 @ 3' 1 1/2"	15557	Passed (22%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.020 @ 3' 1 1/2"	0.200	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.033 @ 3' 1 1/2"	0.300	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	3.00"	3.00"	2.16"	926	1441	2368	Blocking
2 - Stud wall - DF	3.00"	3.00"	2.16"	926	1441	2368	Blocking
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed							

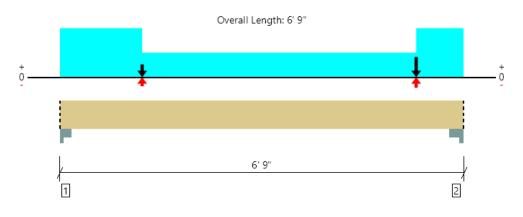
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 3" o/c	
Bottom Edge (Lu)	6' 3" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 6' 3"	N/A	8.2		
1 - Uniform (PSF)	0 to 6' 3" (Top)	11' 6 3/8"	25.0	40.0	Default Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern) [Group]
Member Reaction (lbs)	13720 @ 6' 3 1/2"	18375 (7.00")	Passed (75%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans) [1]
Shear (lbs)	3498 @ 1' 9 1/2"	10640	Passed (33%)	1.00	1.0 D + 1.0 L (All Spans) [1]
Moment (Ft-Ibs)	7024 @ 2' 11 15/16"	31114	Passed (23%)	1.00	1.0 D + 1.0 L (All Spans) [1]
Live Load Defl. (in)	0.018 @ 3' 3 13/16"	0.199	Passed (L/999+)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans) [1]
Total Load Defl. (in)	0.035 @ 3' 3 11/16"	0.298	Passed (L/999+)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans) [1]

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	B	earing Lengt	:h	Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Factored	Accessories
1 - Column Cap - steel	5.50"	5.50"	2.69"	3369	3702	682	486/-486	7071	Blocking
2 - Column Cap - steel	7.00"	7.00"	5.23"	6420	5523	2808	2003/-2003	13720	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	6' 9" o/c						
Bottom Edge (Lu)	6' 9" o/c						
Maximum allowable bracing intervals based on applied load							

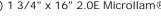
Maximum allowable bracing intervals based on applied load

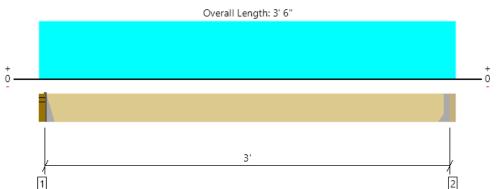
			Dead	Floor Live	Snow	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 6' 9"	N/A	16.3				
1 - Uniform (PSF)	0 to 6' 9" (Top)	11' 6 3/8"	25.0	40.0	-	-	Default Load
2 - Point (lb)	1' 4 1/2" (Front)	N/A	2066	1679	633	451/-451	Linked from: 32, Support 1
3 - Point (lb)	5' 11 1/2" (Front)	N/A	5042	3433	2857	2038/-2038	Linked from: 32, Support 2
4 - Uniform (PSF)	0 to 1' 4 1/2" (Top)	11' 6 3/8"	25.0	40.0	-	-	Default Load
5 - Uniform (PSF)	5' 11 1/2" to 6' 9" (Top)	11' 6 3/8"	25.0	40.0	-	-	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com Job Notes



4/25/2023 6:25:06 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Mithalia Residence Page 51 / 67

Main, 62 1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1231 @ 3"	1969 (1.50")	Passed (63%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	137 @ 1' 7"	5320	Passed (3%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	923 @ 1' 9"	15557	Passed (6%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.003 @ 1' 9"	0.100	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.005 @ 1' 9"	0.150	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

PASSED

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on DF studWall	3.00"	Hanger ¹	1.50"	559	875	1434	See note 1
2 - Hanger on 16" DF beam	3.00"	Hanger ¹	1.50"	559	875	1434	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	3' o/c						
Bottom Edge (Lu)	3' o/c						
Maximum allowable boards intervale based on annihild band							

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie

1 3						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Top Mount Hanger	Connector not found	N/A	N/A	N/A	N/A	
2 - Face Mount Hanger	IUS1.81/14	2.00"	N/A	14-10dx1.5	2-10dx1.5	

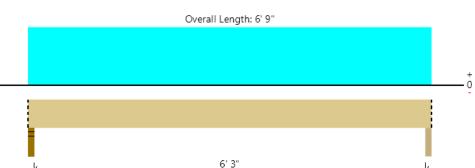
• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	3" to 3' 3"	N/A	8.2		
1 - Uniform (PSF)	0 to 3' 6" (Top)	12' 6"	25.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library

Weyerhaeuser


The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com

Main, 63 1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1379 @ 1 1/2"	3281 (3.00")	Passed (42%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	732 @ 1' 7"	5320	Passed (14%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2158 @ 3' 4 1/2"	15557	Passed (14%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.015 @ 3' 4 1/2"	0.217	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.023 @ 3' 4 1/2"	0.325	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

2

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

0

1

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	3.00"	3.00"	1.50"	481	899	1379	Blocking
2 - Beam - DF	3.00"	3.00"	1.50"	481	899	1379	Blocking
2 - Beam - DF • Blocking Papels are assumed to carry no load	0.00						

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 9" o/c	
Bottom Edge (Lu)	6' 9" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 6' 9"	N/A	8.2		
1 - Uniform (PSF)	0 to 6' 9" (Top)	3' 9 1/4"	25.0	60.0	Default Load
2 - Uniform (PSF)	0 to 6' 9" (Top)	1'	40.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	

4/25/2023 6:25:06 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Mithalia Residence Page 53 / 67

Main, 64A 1 piece(s) 3 1/2" x 12" 24F-V4 DF Glulam

Overall Length: 12' 2 3/4"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2002 @ 11' 10 3/4"	12513 (5.50")	Passed (16%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1519 @ 1' 7"	7420	Passed (20%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	5408 @ 6' 2 1/8"	16800	Passed (32%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.096 @ 6' 2 1/8"	0.381	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.140 @ 6' 2 1/8"	0.572	Passed (L/978)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

PASSED

· Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 11' 5 1/4".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Column Cap - steel	7.00"	7.00"	1.50"	645	1398	2043	Blocking
2 - Column Cap - steel	5.50"	5.50"	1.50"	632	1369	2002	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	12' 3" o/c				
Bottom Edge (Lu)	12' 3" o/c				
•Maximum allowable bracing intervals based on applied load					

m allowable bracing intervals based on applied load

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 12' 2 3/4"	N/A	10.2		
1 - Uniform (PSF)	0 to 12' 2 3/4" (Top)	3' 9 1/4"	25.0	60.0	Default Load

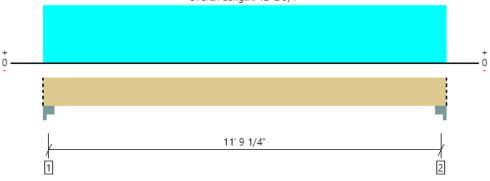
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com

Job Notes



4/25/2023 6:25:06 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Mithalia Residence Page 54 / 67

Main, 64B 1 piece(s) 3 1/2" x 12" 24F-V4 DF Glulam

Overall Length: 12' 2 3/4"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2022 @ 4"	12513 (5.50")	Passed (16%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1540 @ 1' 5 1/2"	7420	Passed (21%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	5527 @ 6' 1 3/8"	16800	Passed (33%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.100 @ 6' 1 3/8"	0.385	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.147 @ 6' 1 3/8"	0.578	Passed (L/946)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

· Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 11' 6 3/4".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Column Cap - steel	5.50"	5.50"	1.50"	639	1383	2022	Blocking
2 - Column Cap - steel	5.50"	5.50"	1.50"	639	1383	2022	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments		
Top Edge (Lu)	12' 3" o/c			
Bottom Edge (Lu)	12' 3" o/c			
•Maximum allowable bracing intervals based on applied load				

m allowable bracing intervals based on applied load

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 12' 2 3/4"	N/A	10.2		
1 - Uniform (PSF)	0 to 12' 2 3/4" (Top)	3' 9 1/4"	25.0	60.0	Default Load

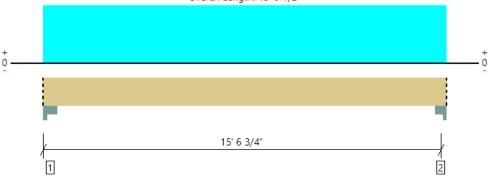
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com

Job Notes



4/25/2023 6:25:06 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Mithalia Residence Page 55 / 67

Main, 65 1 piece(s) 3 1/2" x 12" 24F-V4 DF Glulam

Overall Length: 15' 9 1/2"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2591 @ 15' 5 1/2"	12513 (5.50")	Passed (21%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2108 @ 1' 7"	7420	Passed (28%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	9302 @ 7' 11 1/2"	16800	Passed (55%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.284 @ 7' 11 1/2"	0.500	Passed (L/634)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.415 @ 7' 11 1/2"	0.750	Passed (L/433)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

· Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 15'.

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Column Cap - steel	7.00"	7.00"	1.50"	831	1801	2632	Blocking
2 - Column Cap - steel	5.50"	5.50"	1.50"	818	1772	2591	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	15' 10" o/c				
Bottom Edge (Lu)	15' 10" o/c				
•Maximum allowable bracing intervals based on applied load					

m allowable bracing intervals based on applied load

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 15' 9 1/2"	N/A	10.2		
1 - Uniform (PSF)	0 to 15' 9 1/2" (Top)	3' 9 1/4"	25.0	60.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com

Job Notes

4/25/2023 6:25:06 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Mithalia Residence Page 56 / 67

PASSED

Main, 66 1 piece(s) 5 1/2" x 12" 24F-V4 DF Glulam

PASSED

Overall Length: 15' 6 3/4"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5373 @ 15' 2 3/4"	19663 (5.50")	Passed (27%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	4358 @ 1' 7"	11660	Passed (37%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	18983 @ 7' 10 1/8"	26400	Passed (72%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.361 @ 7' 10 1/8"	0.492	Passed (L/492)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.523 @ 7' 10 1/8"	0.739	Passed (L/339)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

· Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 14' 9 1/4".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Column Cap - steel	7.00"	7.00"	1.53"	1695	3765	5460	Blocking
2 - Column Cap - steel	5.50"	5.50"	1.50"	1668	3705	5373	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	15' 7" o/c				
Bottom Edge (Lu)	15' 7" o/c				
Maximum allowable bracing intervals based on applied load					

um allowable bracing intervals based on applied load

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 15' 6 3/4"	N/A	16.0		
1 - Uniform (PSF)	0 to 15' 6 3/4" (Top)	8'	25.0	60.0	Default Load

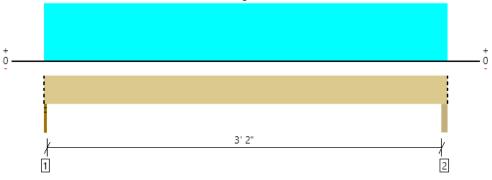
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com

Job Notes



Main, 67 1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

Overall Length: 3' 6 1/2"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	883 @ 0	1641 (1.50")	Passed (54%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	129 @ 1' 5 1/2"	5320	Passed (2%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	754 @ 1' 8 1/2"	15557	Passed (5%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.002 @ 1' 8 1/2"	0.114	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.004 @ 1' 8 1/2"	0.171	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

1						
	Available	Required	Dead	Floor Live	Factored	Accessories
	1.50"	1.50"	428	455	883	Blocking
	3.00"	1.50"	459	488	947	Blocking
	" "	" 3.00"	" 3.00" 1.50"	" 3.00" 1.50" 459	" <u>3.00"</u> <u>1.50</u> " <u>459</u> <u>488</u>	

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 7" o/c	
Bottom Edge (Lu)	3' 7" o/c	

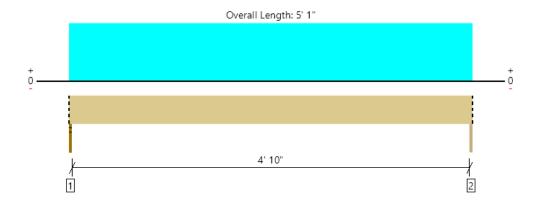
•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 6 1/2"	N/A	8.2		
1 - Uniform (PSF)	0 to 3' 6 1/2" (Top)	3' 9 1/4"	25.0	60.0	Default Load
2 - Uniform (PSF)	0 to 3' 6 1/2" (Top)	1'	40.0	40.0	Default Load
3 - Uniform (PSF)	0 to 3' 6 1/2" (Top)	9'	12.0	-	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator	Job Notes
Javid Abdi	
Atlas Consulting Engineers	
(206) 427-7233	
iaviddabdi@vahoo.com	

Main, 68 1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1313 @ 0	1641 (1.50")	Passed (80%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	560 @ 1' 5 1/2"	5320	Passed (11%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1669 @ 2' 6 1/2"	15557	Passed (11%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.007 @ 2' 6 1/2"	0.169	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.013 @ 2' 6 1/2"	0.254	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports					
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories			
1 - Stud wall - DF	1.50"	1.50"	1.50"	637	677	1313	Blocking			
2 - Beam - DF	1.50"	1.50"	1.50"	637	677	1313	Blocking			
 Blocking Papels are assumed to carry no load 	Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed									

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing Bracing Intervals		Comments
Top Edge (Lu)	5' 1" o/c	
Bottom Edge (Lu)	5' 1" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 5' 1"	N/A	8.2		
1 - Uniform (PSF)	0 to 5' 1" (Top)	3' 9 1/4"	25.0	60.0	Default Load
2 - Uniform (PSF)	0 to 5' 1" (Top)	1'	40.0	40.0	Default Load
3 - Uniform (PSF)	0 to 5' 1" (Top)	9'	12.0	-	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

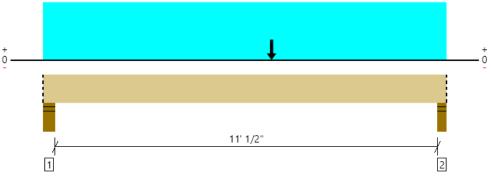
 ForteWEB Software Operator
 Job Notes

 Javid Abdi

 Atlas Consulting Engineers

 (206) 427-7233

 javiddabdi@yahoo.com



4/25/2023 6:25:06 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Mithalia Residence Page 59 / 67

Main, 69 3 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	12468 @ 11' 8"	14766 (4.50")	Passed (84%)	assed (84%) 1.0 D + 0.525 E + 0.75 L + Spans)	
Shear (lbs)	8184 @ 1' 10"	15960	Passed (51%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	31150 @ 6' 1/4"	46671	Passed (67%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.155 @ 6' 1 1/4"	0.376	Passed (L/875)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.285 @ 6' 13/16"	0.565	Passed (L/476)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Seismic	Factored	Accessories
1 - Stud wall - DF	6.00"	6.00"	3.71"	6319	5449	3348/-3348	12163	Blocking
2 - Stud wall - DF	4.50"	4.50"	3.80"	6188	5336	4340/-4340	12468	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments					
Top Edge (Lu)	8' 9" o/c						
Bottom Edge (Lu)	11' 11" o/c						
Maximum allowable bracing intervals based on applied load							

Maximum allowable bracing intervals based on applied load

			Dead	Floor Live	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 11' 11"	N/A	24.5			
1 - Uniform (PSF)	0 to 11' 11" (Top)	7' 6 1/2"	40.0	40.0	-	Default Load
2 - Point (Ib)	6' 9" (Front)	N/A	-	-	7688	
3 - Uniform (PSF)	0 to 11' 11" (Top)	7' 6 1/2"	40.0	40.0	-	Default Load
4 - Uniform (PSF)	0 to 11' 11" (Top)	7' 6 1/2"	40.0	40.0	-	Default Load
5 - Uniform (PSF)	0 to 11' 11" (Top)	10'	12.0	-	-	Default Load

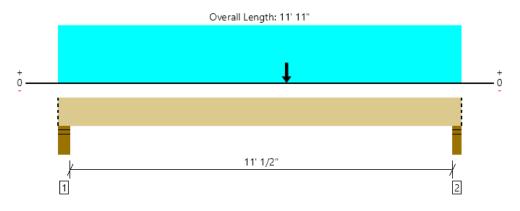
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 Javiddabdi@yahoo.com Job Notes

4/25/2023 6:25:06 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Mithalia Residence Page 60 / 67


Main, 69 (w_overstrength)

3 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

Support 2 failed reaction check due to insufficient bearing capacity. An excessive uplift of -2067 lbs at support located at 4 1/2" failed this product.

All excessive upint of -2007 lbs at support located at 4 172 Tailed this product.

An excessive uplift of -3883 lbs at support located at 11' 8" failed this product.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	15886 @ 11' 8"	14766 (4.50")	Failed (108%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	8184 @ 1' 10"	15960	Passed (51%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	55094 @ 6' 9"	74674	Passed (74%)	1.60	1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.262 @ 6' 9"	0.376	Passed (L/517)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.391 @ 6' 1 1/4"	0.565	Passed (L/346)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length				Loads to Su			
Supports	Total	Available	Required	Dead	Floor Live	Seismic	Factored	Accessories
1 - Stud wall - DF	6.00"	6.00"	4.51"	6319	5449	8369/-8369	14799/- 2067	Blocking
2 - Stud wall - DF	4.50"	4.50"	4.84"	6188	5336	10851/- 10851	15886/- 3883	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 7" o/c	
Bottom Edge (Lu)	11' 11" o/c	

Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 11' 11"	N/A	24.5			
1 - Uniform (PSF)	0 to 11' 11" (Top)	7' 6 1/2"	40.0	40.0		Default Load
2 - Point (lb)	6' 9" (Front)	N/A	-	-	19220	
3 - Uniform (PSF)	0 to 11' 11" (Top)	7' 6 1/2"	40.0	40.0		Default Load
4 - Uniform (PSF)	0 to 11' 11" (Top)	7' 6 1/2"	40.0	40.0		Default Load
5 - Uniform (PSF)	0 to 11' 11" (Top)	10'	12.0	-	-	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

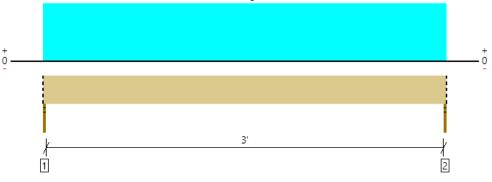
 ForteWEB Software Operator
 Job Notes

 Javid Abdi

 Atlas Consulting Engineers

 (206) 427-7233

 javiddabdi@yahoo.com



Main, 70 2 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2215 @ 0	3281 (1.50")	Passed (68%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	227 @ 1' 5 1/2"	10640	Passed (2%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1800 @ 1' 7 1/2"	31114	Passed (6%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.002 @ 1' 7 1/2"	0.108	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.005 @ 1' 7 1/2"	0.162	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Bearing Length			Loads	to Supports		
Total	Available	Required	Dead	Floor Live	Factored	Accessories
1.50"	1.50"	1.50"	1218	997	2215	Blocking
1.50"	1.50"	1.50"	1218	997	2215	Blocking
	Total 1.50"	TotalAvailable1.50"1.50"	TotalAvailableRequired1.50"1.50"1.50"	Total Available Required Dead 1.50" 1.50" 1.50" 1218	Total Available Required Dead Floor Live 1.50" 1.50" 1.50" 1218 997	TotalAvailableRequiredDeadFloor LiveFactored1.50"1.50"1.50"12189972215

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 3" o/c	
Bottom Edge (Lu)	3' 3" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 3"	N/A	16.3		
1 - Uniform (PSF)	0 to 3' 3" (Top)	7' 8"	40.0	40.0	Default Load
2 - Uniform (PSF)	0 to 3' 3" (Top)	7' 8"	40.0	40.0	Default Load
3 - Uniform (PSF)	0 to 3' 3" (Top)	10'	12.0	-	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

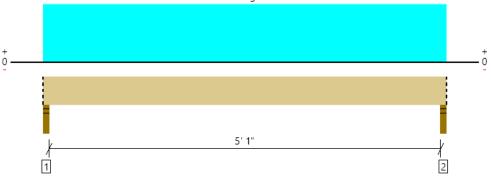
 ForteWEB Software Operator
 Job Notes

 Javid Abdi

 Atlas Consulting Engineers

 (206) 427-7233

 javiddabdi@yahoo.com



Main, 71 2 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3764 @ 1 1/2"	6563 (3.00")	Passed (57%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1629 @ 1' 7"	10640	Passed (15%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	4794 @ 2' 9 1/2"	31114	Passed (15%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.007 @ 2' 9 1/2"	0.178	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.020 @ 2' 9 1/2"	0.267	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	3.00"	3.00"	1.72"	2471	1293	3764	Blocking
2 - Stud wall - DF	3.00"	3.00"	1.72"	2471	1293	3764	Blocking
Blocking Panels are assumed to carry no loads annied directly above them and the full load is annied to the member being designed							

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 7" o/c	
Bottom Edge (Lu)	5' 7" o/c	

•Maximum allowable bracing intervals based on applied load.

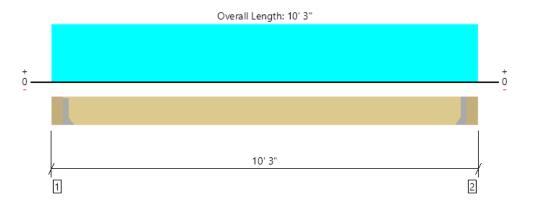
			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 5' 7"	N/A	16.3		
1 - Uniform (PSF)	0 to 5' 7" (Top)	11' 7"	75.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com	



4/25/2023 6:25:06 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Mithalia Residence Page 63 / 67

Main, 72 1 piece(s) 3 1/2" x 12" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1564 @ 5 1/2"	3413 (1.50")	Passed (46%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1229 @ 1' 5 1/2"	7420	Passed (17%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	3650 @ 5' 1 1/2"	16800	Passed (22%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.038 @ 5' 1 1/2"	0.233	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.063 @ 5' 1 1/2"	0.467	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 9' 4".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on 12" DF beam	5.50"	Hanger ¹	1.50"	688	1025	1713	See note 1
2 - Hanger on 12" DF beam	5.50"	Hanger ¹	1.50"	688	1025	1713	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	9' 4" o/c				
Bottom Edge (Lu)	9' 4" o/c				
Maximum allowable has included an analised band					

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie							
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories	
1 - Face Mount Hanger	LUS410	2.00"	N/A	8-16d	6-16d		
2 - Face Mount Hanger	LUS410	2.00"	N/A	8-16d	6-16d		

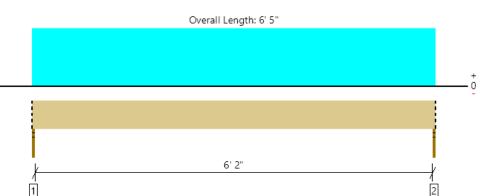
• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	5 1/2" to 9' 9 1/2"	N/A	10.2		
1 - Uniform (PSF)	0 to 10' 3" (Top)	5'	25.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator Job Notes Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com

4/25/2023 6:25:06 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Mithalia Residence Page 64 / 67

Main, 73 3 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4399 @ 0	4922 (1.50")	Passed (89%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2400 @ 1' 5 1/2"	15960	Passed (15%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	7057 @ 3' 2 1/2"	46671	Passed (15%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.011 @ 3' 2 1/2"	0.214	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.024 @ 3' 2 1/2"	0.321	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

0

Bearing Length			Loads to Supports (lbs)			
Total	Available	Required	Dead	Floor Live	Factored	Accessories
1.50"	1.50"	1.50"	2431	1968	4399	Blocking
1.50"	1.50"	1.50"	2431	1968	4399	Blocking
	Total 1.50"	Total Available 1.50" 1.50"	TotalAvailableRequired1.50"1.50"1.50"	Total Available Required Dead 1.50" 1.50" 1.50" 2431	Total Available Required Dead Floor Live 1.50" 1.50" 1.50" 2431 1968	Total Available Required Dead Floor Live Factored 1.50" 1.50" 1.50" 2431 1968 4399

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 5" o/c	
Bottom Edge (Lu)	6' 5" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 6' 5"	N/A	24.5		
1 - Uniform (PSF)	0 to 6' 5" (Top)	7' 8"	40.0	40.0	Default Load
2 - Uniform (PSF)	0 to 6' 5" (Top)	7' 8"	40.0	40.0	Default Load
3 - Uniform (PSF)	0 to 6' 5" (Top)	10'	12.0	-	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Javid Abdi	
Atlas Consulting Engineers	
(206) 427-7233	
javiddabdi@yahoo.com	

4/25/2023 6:25:06 PM UTC ForteWEB v3.5, Engine: V8.2.5.1, Data: V8.1.3.6 File Name: Mithalia Residence Page 65 / 67

PASSED

Main, 33+34 1 piece(s) 6 x 6 DF No.1

Post Height: 10'

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	22	50	Passed (44%)		
Compression (lbs)	7177	20918	Passed (34%)	1.00	1.0 D + 1.0 L
Base Bearing (lbs)	7177	898425	Passed (1%)		1.0 D + 1.0 L
Bending/Compression	0.39	1	Passed (39%)	1.00	1.0 D + 1.0 L

• Input axial load eccentricity for this design is 16.67% of applicable member side dimension.

Applicable calculations are based on NDS.

Supports	Туре		Material	N
Base	Beam		Steel	B
Max Unbraced Length			Comments	
Full Member Length		No bracing assumed.		

Member Type : Free Standing Post Building Code : IBC 2015 Design Methodology : ASD

Drawing is Conceptual

Vertical Loads	Dead (0.90)	Floor Live (1.00)	Comments
1 - Point (lb)	1441	2880	Linked from: 33, Support 2
2 - Point (lb)	946	1910	Linked from: 34, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Javid Abdi Atlas Consulting Engineers (206) 427-7233 javiddabdi@yahoo.com Job Notes

Main, 33+34+66+63 1 piece(s) 6 x 6 DF No.1

Post Height: 10'

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	22	50	Passed (44%)		
Compression (lbs)	14017	20918	Passed (67%)	1.00	1.0 D + 1.0 L
Base Bearing (lbs)	14017	898425	Passed (2%)		1.0 D + 1.0 L
Bending/Compression	N/A	1	Passed (N/A)		N/A

Input axial load eccentricity for the design is zero

Applicable calculations are based on NDS.

Supports	Туре		Material	
Base	Beam		Steel	
Max Unbraced Length		Comments		
Full Member Length		No bracing assumed.		

Member Type : Free Standing Post Building Code : IBC 2015 Design Methodology : ASD

Drawing is Conceptual

Vertical Loads	Dead (0.90)	Floor Live (1.00)	Comments
1 - Point (lb)	1441	2880	Linked from: 33, Support 2
2 - Point (lb)	946	1910	Linked from: 34, Support 1
3 - Point (lb)	481	899	Linked from: 63, Support 1
4 - Point (lb)	1695	3765	Linked from: 66, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	
Javid Abdi	
Atlas Consulting Engineers	
(206) 427-7233	
iaviddabdi@vahoo.com	


Job Notes

Roof, Deck Joists 1 piece(s) 2 x 10 DF No.1 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	493 @ 4 1/2"	3984 (4.25")	Passed (12%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	366 @ 1' 2 3/4"	1665	Passed (22%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	945 @ 4' 5 1/2"	2255	Passed (42%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.048 @ 4' 5 1/2"	0.204	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.067 @ 4' 5 1/2"	0.408	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
TJ-Pro [™] Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

• Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	5.50"	4.25"	1.50"	149	357	505	1 1/4" Rim Board
2 - Stud wall - DF	5.50"	4.25"	1.50"	149	357	505	1 1/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 9" o/c	
Bottom Edge (Lu)	8' 9" o/c	
Maximum allowable bracing inten	als based on applied lead	

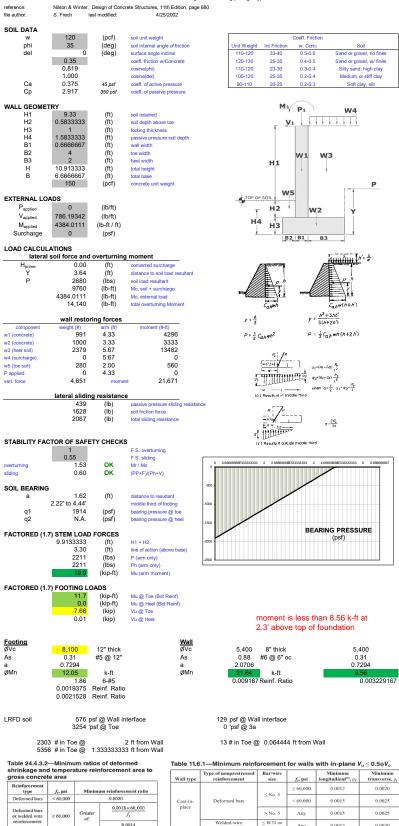
Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 8' 11"	16"	25.0	60.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator	
Javid Abdi	
Atlas Consulting Engineers	
(206) 427-7233	
iaviddabdi@vahoo.com	

Mithalia Retaining Wall UPDATED 10.17 ft

CANTILEVER RETAINING WALL EXTERNAL STABILITY

uses Rankine coefficients for noncohesive soils, external moment at top of wall does not contribute to restoring moment (overturning only), no deflection or service load checks, soil on two side of wall does not brace wall against overturning (silding only)

> No. 5

≤ W31 or D31

Any

Welded-wire

reinforcemen Deformed bar or welded-wir

reinforcement ssed walls with an average effe

Precast^[2]

Any

Any

Any

stress of at least 225 psi ¹⁹In one-way precast, prestressed walls not wider than 12 ft and not mechanically connected to cause restraint in the transverse direction, the minimum reinforcement requirement in the direction normal to the flexural reinforcement need not be satisfied.

4/26/20232:25 PM

0.0015

0.0012

0.0010

0.0025

0.0020

0.0010

Greater of:

0.0014

≥ 60,000

8" thick

#5 @ 12" oc

k-ft

Reinf. Ratio

Mithalia Retaining Wall UPDATED 6 ft

CANTILEVER RETAINING WALL EXTERNAL STABILITY
Imitations: uses Rankine coefficients for noncohesive soils, external moment at top of wall does not contribute to restoring moment (overturning only), no deflection or service load checks, soil on low side of wall does not brace wall against overturning (sliding only)

reference:				de of wall does n ete Structures, 1		ainst overturning (sliding onl e 680	y)			
file author:	S. Frech	last m			5/2002					
SOIL DATA										
w phi	120 35		(pcf) (deg)	soil unit weight soil internal an	ale of friction	Unit Weight	Int Friction	Coeff. Fric		Soil
del	00		(deg)	surface angle i		110-120	33-40	0.5-0.6		avel, no fines
	0.35			coeff. friction w	/Concrete	120-130	25-35	0.4-0.5		avel, w/ fines
	0.819 1.000			cosine(phi)		110-120 100-120	23-30 25-35	0.3-0.4		d, high clay
Ca	0.375		45 psf	cosine(del) coeff. of active	pressure	90-110	25-35 20-25	0.2-0.4		or stiff clay clay, silt
Cp	2.917		50 psf	coeff. of passiv		30-110	20-23	0.2-0.3	Goit	ady, on
····								\sim		
VALL GEOME H1	5.083333	2	(#)				м	¼ P,1 \	W4	
H2	0.5833333		(ft) (ft)	soil retained soil depth abov	ie toe		,	v 1		
H3	0.833333		(ft)	footing thickne			T T			
H4	1.416666	7	(ft)	passive pressu	re soil depth					
B1	0.5		(ft)	wall width						
B2 B3	1		(ft) (ft)	toe width heel width				W1	wз	
н	6.5		(ft)	total height			H1		1	
в	3.5		(ft)	total base						
	150		(pcf)	concrete unit w	veight					Р
EXTERNAL LO						TOP O	F SOIL	V5		
P _{applied}	0		(lb/ft)			· · · ·	H2			
V _{applied}	256.8888		(lb/ft)			1	+	N	2 Y	
Mapplied	818.8333		o-ft / ft)			H	4 нз		+	
Surcharge	0		(psf)				+		+	
-		_	. ,				1	B2 B1	B3 _	
OAD CALCUL										
	I soil force a 0.0		(ft)		harra				. junini	h'= w
H _{prime} Y	2.1		(ft) (ft)	converted surc distance to soil						
P	95		(lbs)	soil load result			j∎, ,			
	206	60 (lb-ft)	Mo, soil + surc	harge					
	818.8333 2,88		(lb-ft)	Mo, external lo			2 1 I I I I I I I I I I I I I I I I I I			
	∠,88	JU (lb-ft)	total overturnin	y woment		Canwh		Cahw(h+h')	
	wall res					y = 1/3		y =	$\frac{h^2 + 3hh'}{3(h+2h')}$	
component	weight (#) 42		rm (ft)	moment (#			0			
v1 (concrete) v2 (concrete)	42		1.25 1.75		531 766	P = 1/2	Canwh ²	P	$\frac{1}{2}C_{ah}$ wh $(h+2h')$	
v3 (heel soil)	136		2.50		3400					
v4 (surcharge)			2.50		0		P. 18			
v5 (toe soil)	7		0.50		35		4 2 ··· +	L. _ @	=(4t-6d) - R	
ert. force	2,29		1.25 momen		0 4.732	Ţ		批型字 。	$z^{\alpha(6_{\ell})-2_{\ell})}\frac{N_{\mu}}{\epsilon^2}$	
01010100	2,20		momon		1,7 02	1	······(-		hen $\alpha = \frac{l}{2} \cdot \phi_1 + \phi_2 = \frac{R_2}{l}$	
	lateral sli		sistance			1e	2) Resultant in r	niddle thrd		
	35 80		(lb) (lb)	passive pressu soil friction force	re sliding resista	ince	R []//			
	115		(ID) (Ib)	total sliding res				5771	26	
			. ,				Ea 4 3a		$\sigma = \frac{1}{3\rho}$	
STABILITY FA										
JIADILITITA	1		CHECKS	F.S. overturnin	a	1	c) Resultont out	iside middle min	,	
	0.96			F.S. sliding		0 0.35 0.7	105 14		2.1 2.45 2.8	
overturning	1.6		OK	Mr / Mo		0 0.35 0.7	1.05 1.4	1.75	2.1 2.45 2.8	3.15 3.5
liding	0.9	96	ок	(PP+F)/(Ph+V)	-200 -				++++++
SOIL BEARING	3					-400 ·				
а	0.8		(ft)	distance to res		-600 ·				++++++
	1.17' to 2.3		(middle third of		-800 -		•		
q1 q2	188 N./		(psf) (psf)	bearing pressu bearing pressu		-1000 -				
		-	()			-1200 -	/	DE	ARING PRESS	IIDE
FACTORED (1.						-1400 -		DE	(psf)	URE
	5.666666 1.8		(ft) (ft)	H1 + H2	the second second	-1600				
	72		(It) (lbs)	line of action (a P (arm only)	source page)	-1800				
	72	23	(lbs)	Ph (arm only)		-2000				
	3	.7 (kip-ft)	Mu (arm mome	ent)					
ACTORED (1.	.7) FOOTING		s							
	1	.2 (kip-ft)	Mu @ Toe (Bo						
		.2 (kip-ft)	Mu @ Heel (Bo	ot Reinf)					
	2.5 0.5		(kip) (kip)	Vu @ Toe Vu @ Heel						
	0.0	,,	(iup)	VU (@ 11661						
Footing ØVc	7 000		" thick		<u>Wall</u> øVc	4.554	6" thick			
avc As	7,969 0.15		@ 16"		Øvc As	4,554 0.15	5" thick #4 @ 16"			
15	0.0002	<i></i> 4	<u>ی</u> . و		a	0.0002				
ØMn	4.72		k-ft		ØMn	4.05	k-ft			
			6-#4 nf. Ratio			0.001563	Reinf. Ra	tio		
	0.002857		nf. Ratio							
	0.0012									
						1000				
RFD soil			Wall int	terface		1228 psf @ Wa 0 'psf @ 3a	II interface			
	320)8 'psf (y ioe			0 'psf @ 3a				
188	88 # in Toe @	0	0.5	5 ft from Wal	I	571 # in Toe @	0.3	1 ft from V	Vall	
66	60 # in Toe 🤅	g 0.33	3333333	8 ft from Wal	I					
Table 24.4.3.2					Table 11.	6.1—Minimum reinfe	orcement	for walls	with in-plane	$V_u \leq 0.5 \phi V_c$
shrinkage an gross concre	d temperatu	re reinf	orcemen	nt area to		Type of nonprestressed	Bar/wire		Minimum	Minimur
Reinforcement					Wall type	reinforcement	size	f, psi	longitudinal ^[1] , ρ _ℓ 0.0012	transverse. 0.0020
type	f _n psi	Minimu	n reinforcer	nent ratio			≤ No. 5	$\geq 60,000$		
Deformed bars	< 60,000	1	0.0020	×60,000	Cast-in- place	Deformed bars		< 60,000	0.0015	0.0025
Deformed bars or welded wire	> 60.000	Greater		×60,000 /,	prace		> No. 5	Any	0.0015	0.0025

	Wall type	reinforcement	size	f,, psi	longitudinal ^[1] ,
ent ratio			≤ No. 5	$\geq 60,000$	0.0012
	Cast-in-	Deformed bars	5 No. 5	< 60,000	0.0015
60,000	place		> No. 5	Any	0.0015
14		Welded-wire reinforcement	≤ W31 or D31	Any	0.0012
	Precast ^[2]	Deformed bars or welded-wire reinforcement	Any	Any	0.0010

¹⁴Prestressed walls with an average effective compressive stress of at least 225 psi need not meet the requires the comparison of the co long/https://www.comment.pt/ Pill/non-way process, prestrosade walls not wider than 12 ft and not mechanically connected to cause restraint in the transverse direc-tion, the minimum reinforcement requirement in the direction normal to the flexural reinforcement need not be satisfied.

0.0020

0.0010

nt for mi

Deformed bars or welded wire reinforcement

Mithalia Retaining Wall UPDATED 4.5 ft

CANTILEVER RETAINING WALL EXTERNAL STABILITY
Imitations:
uses Rankine coefficients for noncohesive soils, external moment at top of wall does not contribute to restoring moment (overturning only), no deflection or
service load checks, soil on low side of wall does not brace wall against overturning (sliding only)

		cks, soil on low si							
eference: le author:		Design of Concr last modified:	ete Structures, 11th 4/25/2		680				
SOIL DATA	120	(pcf)	soil unit weight		[Coeff. Fric	tion	
phi	35	(deg)	soil internal angle	of friction	Unit Weight	Int Friction			Soil
del	0	(deg)	surface angle incli		110-120	33-40	0.5-0.6		avel, no fines
	0.35		coeff. friction w/Co	oncrete	120-130	25-35	0.4-0.5		avel, w/ fines
	0.819		cosine(phi)		110-120	23-30	0.3-0.4		d, high clay
Ca	1.000 0.375	15	cosine(del)		100-120	25-35	0.2-0.4		or stiff clay
Са	2.917	45 psf 350 psf	coeff. of active pre coeff. of passive p		90-110	20-25	0.2-0.3	s Son	clay, silt
0p	2.011	000 poi	coon: or passive p	1000010					
ALL GEOME						M	PI	W4	
H1	3.5833333	(ft)	soil retained				i II 🗖		
H2	0.5833333	(ft)	soil depth above to	De		- T - 7	V1 + +	* * * * * * * *	
H3 H4	0.83333333 1.4166667	(ft) (ft)	footing thickness passive pressure s	cil depth					
B1	0.5	(ft)	wall width	son deput					
B2	1.5	(ft)	toe width				W1	W3	
B3	0.5	(ft)	heel width			H1			
н	5	(ft)	total height				7	÷	
В	2.5 150	(ft) (pcf)	total base concrete unit weig						
	100	(por)	concrete unit weig	hur.		10	/5	-+	Р
XTERNAL LO	ADS				TOP O	F SOIL			
Papplied	0	(lb/ft)			т т	H2	+ w	/2 Y	
Vapplied	138.88889	(lb/ft)				. t			
Mapplied	325.52083	(lb-ft / ft)			H	⁴ нз		*	
Surcharge	0	(psf)			<u>+</u>	t	82 B1	B3 1	
	1710110					12	2.01.	53 .	
OAD CALCUL lateral	ATIONS	d overturning	moment					5.55° T	h' 5
H _{prime}	0.00	(ft)	converted surchar	ge		Call Street		. initial	<u> </u>
Y	1.67	(ft)	distance to soil loa		A	i A			
Р	563	(lbs)	soil load resultant		L.	1 . h		€€ ^"	
	940	(lb-ft)	Mo, soil + surchar	ge					
	325.52083	(lb-ft)	Mo, external load		- "B		~~~~ B		
	1,270	(lb-ft)	total overturning N	ioment		Canwh		$C_{ahw}(h+h')$	
	wall resto	ring forces			$y = \frac{h}{3}$		y =	$\frac{h^2 + 3hh'}{3(h+2h')}$	
component	weight (#)	arm (ft)	moment (#-ft)		•				
(concrete)	313	1.75		647	$P = \frac{1}{2}$	Can wh ²	ρ :	$=\frac{1}{2}C_{ah}wh(h+2h')$	
2 (concrete)	313 250	1.25 2.25		191 163					
(heel soil) (surcharge)	250	2.25	5	0		a. 1ª			
i (toe soil)	105	0.75		79		Second 1	E1) .	-101-6 m. R.	
applied	0	1.75		0	Ŧ	14 2 ····	um± "	productional p2	
rt. force	980	momen	nt 1,5	79	41		[]]:- -1 +	$\begin{aligned} & e^{-(q_{\ell}-5,q_{\ell})}\frac{R_{\mu}}{\ell^{2}} \\ & e^{-16(q-2\ell)}\frac{R_{\mu}}{\ell^{2}} \\ & \text{ hen } a^{-\frac{\ell}{2}}, g_{1}+g_{2}+\frac{R_{\mu}}{\ell}. \end{aligned}$	
	latoral - "."	a malat) Resultant in m	sidalle Ner 4	hen α= <u>ς</u> .ψ1*φ2* <u>ς</u>	
	lateral slidir 351	ng resistance (lb)	passive pressure s	liding register		1 VIESENCIA IN M	acate nitro		
	343	(lb)	soil friction force			R 7"			
	694	(lb)	total sliding resista	ance				2.2.0	
					. 1	E ^a 1 sam	***	30	
	CTOR OF SAFI) Resultont out		a	
	1		F.S. overturning		1	, , resultant out	and model for	~	
	1		F.S. sliding		0 0.25 0.5	0.75 1	1.25	1.5 1.75 2	2.25 2.5
verturning	1.24 0.99	OK NG	Mr / Mo		0 0.25 0.5		1.25	1.5 1.75 2	225 25
ding	0.99	NG	(PP+F)/(Ph+V)						
OIL BEARING	3				-500 •	/			
а	0.32	(ft)	distance to resulta		/	, ,			
-4	0.83' to 1.67'	(middle third of foo		-1000 -				
q1 q2	2042 N.A.	(psf)	bearing pressure (
q2	IN.A.	(psf)	bearing pressure (g neei	-1500 -				
ACTORED (1.	7) STEM LOAD						BE	ARING PRESS	URE
	4.1666667	(ft)	H1 + H2		-2000			(psf)	
	1.39	(ft)	line of action (abov	ve base)					
	391 391	(lbs)	P (arm only)		-2500				
	391	(lbs) (kip-ft)	Ph (arm only) Mu (arm moment)						
	1.0		wa (ann moment)						
ACTORED (1.	7) FOOTING L								
	1.1	(kip-ft)	Mu @ Toe (Bot Re						
	0.0	(kip-ft)	Mu @ Heel (Bot R	teinf)					
	0.00	(kip) (kip)	Vu @ Toe Vu @ Heel						
		(
poting		10" thick		Wall Wc	A 664	6" thia!			
Vc	7,969	10" thick #4 @ 32"		ØVc	4,554	6" thick #4 @ 16"			
Vc		10" thick #4 @ 32"			0.15	6" thick #4 @ 16"			
Vc s	<mark>7,969</mark> 0.075	#4 @ 32" k-ft		ØVc As	0.15 0.0002 4.05	¥4 @ 16" ₀ k-ft	oc		
	7,969 0.075 0.0001 2.36 0.8	#4 @ 32" k-ft 4-#4		ØVc As a	0.15 0.0002 4.05	¥4 @ 16" (oc		
Vc s	7,969 0.075 0.0001 2.36 0.8 0.0026667	#4 @ 32" k-ft 4-#4 Reinf. Ratio		ØVc As a	0.15 0.0002 4.05	¥4 @ 16" ₀ k-ft	oc		
/c s	7,969 0.075 0.0001 2.36 0.8	#4 @ 32" k-ft 4-#4		ØVc As a	0.15 0.0002 4.05	¥4 @ 16" ₀ k-ft	oc		
Vc s	7,969 0.075 0.0001 2.36 0.8 0.0026667	#4 @ 32" k-ft 4-#4 Reinf. Ratio		ØVc As a	0.15 0.0002 4.05	¥4 @ 16" ₀ k-ft	oc		
Vc s Mn	7,969 0.075 0.0001 2.36 0.8 0.0026667 0.000625	#4 @ 32" k-ft 4-#4 Reinf. Ratio Reinf. Ratio psf @ Wall in	terface	ØVc As a	0.15 0.0002 4.05 0.001563 0 psf @ Wal	¥4 @ 16" (k-ft Reinf. Rat	oc		
/c s Mn	7,969 0.075 0.0001 2.36 0.8 0.0026667 0.000625	#4 @ 32" k-ft 4-#4 Reinf. Ratio Reinf. Ratio	terface	ØVc As a	0.15 0.0002 4.05 0.001563	¥4 @ 16" (k-ft Reinf. Rat	oc		
Vc S Mn RFD soil	7,969 0.075 0.0001 2.36 0.002667 0.000625 0 0.000625	#4 @ 32" k-ft 4-#4 Reinf. Ratio Reinf. Ratio psf @ Wall in 'psf @ Toe		ØVc As a	0.15 0.0002 4.05 0.001563 0 psf @ Wal 0 'psf @ Hee	¥4 @ 16" o k-ft Reinf. Rat I interface	io	Mali	
/c /In RFD soil 1666.27	7,969 0.075 0.0001 2.36 0.8 0.0026667 0.000625 0 3471.4 2 # in Toe @	#4 @ 32" k-ft 4-#4 Reinf. Ratio Reinf. Ratio psf @ Wall in 'psf @ Toe 0.64	4 ft from Wall	ØVc As a	0.15 0.0002 4.05 0.001563 0 psf @ Wal 0 'psf @ Hea 0 # in Toe @	¥4 @ 16" (k-ft Reinf. Rat I interface el 2 0.16666	oc io 7 ft from V		
/c ; //n RFD soil 1666.27	7,969 0.075 0.0001 2.36 0.8 0.0026667 0.000625 0 3471.4 2 # in Toe @ 0 # in Toe @	#4 @ 32" k-ft 4-#4 Reinf. Ratio Reinf. Ratio psf @ Wall in 'psf @ Toe 0.64	4 ft from Wall D ft from Wall	ØVc As a ØMn	0.15 0.0002 4.05 0.001563 0 psf @ Wal 0 psf @ Her 0 # in Toe @ 0 # in Toe @	#4 @ 16" (k-ft Reinf. Rat l interface el 0.16666 0.2:	oc io 7 ft from V 5 ft from V	Wall	
/c Mn RFD soil 1666.27 able 24.4.3.2	7,969 0.075 0.0001 2.36 0.8 0.0026667 0.000625 0 3471.4 2 # in Toe @ 0 # in Toe @	#4 @ 32" k-ft 4-#4 Reinf. Ratio Reinf. Ratio psf @ Wall in psf @ Toe 0.64 () tios of deform	4 ft from Wall D ft from Wall med	ØVc As a ØMn	0.15 0.0002 4.05 0.001563 0 psf @ Wal 0 'psf @ Wal 0 'psf @ Hed 0 # in Toe @ 0 # in Toe @	#4 @ 16" k-ft Reinf. Rat l interface el 0.166666) 0.2 prcement	oc io 7 ft from V 5 ft from V	Wall with in-plane	
/c 5 Mn RFD soil 1666.27 Table 24.4.3.2 hr/inkage and	7,969 0.075 0.0001 2.36 0.8 0.0026667 0.000625 0 3471.4 2 # in Toe @ 0 # in Toe @ 	#4 @ 32" k-ft 4-#4 Reinf. Ratio Reinf. Ratio psf @ Wall in psf @ Toe 0.64 () tios of deform	4 ft from Wall D ft from Wall med	ØVc As a ØMn Table 11.6	0.15 0.0002 4.05 0.001563 0 psf @ Wal 0 psf @ Her 0 # in Toe @ 0 # in Toe @	#4 @ 16" (k-ft Reinf. Rat l interface el 0.16666 0.2:	oc io 7 ft from V 5 ft from V for walls	Wall	Minimu
Vc s Mn RFD soil 1666.27 Table 24.4.3.2 hrinkage an pross concrei Resinforcement	7,969 0.075 0.0001 2.36 0.002665 0.002667 0.000625 0 3471.4 2 # in Toe @ 0 # in Toe @ - Minimum ra te d temperature te area	#4 @ 32" k-ft 4-#4 Reinf. Ratio Reinf. Ratio psf @ Wall in 'psf @ Toe 0.64 (tios of deforr reinforcemer	4 ft from Wall D ft from Wall med nt area to	ØVc As a ØMn	0.15 0.0002 4.05 0.001563 0 'psf @ Wal 0 'psf @ Hec 0 # in Toe @ 0 # in Toe @ 0 # in Toe @ 10 # in T	#4 @ 16" k-ft Reinf. Rat l interface d 0.166666 0.0.2: prcement Bar/wire	oc io 7 ft from V 5 ft from V for walls J _r , psi	Wall with in-plane Minimum longitudinal ^[1] , p _c	Minimu transverse
VC 3 Mn RFD soil 1666.27 Table 24.4.3.2 chrinkage an pross concret Reinforcement type	7,969 0.075 0.0001 2.36 0.0026667 0.000625 0 3471.4 2 # in Toe @ 0 # in Toe @ 2 = Minimum ra d temperature te area	#4 @ 32" k-ft 4.#4 Reinf. Ratio Reinf. Ratio psf @ Wall in 'psf @ Toe 0.64 (tios of deform reinforcemen	4 ft from Wall D ft from Wall med nt area to	ØVC As a ØMn Table 11.6 wall type	0.15 0.0002 4.05 0.001563 0 psf @ Wal 0 'psf @ Her 0 # in Toe @ 0 # in Toe @ 0 # in Toe @ 17pe of seeprestressed reinforcement	#4 @ 16" k-ft Reinf. Rat l interface d 0.166666 0.0.2: prcement Bar/wire	io 7 ft from V 5 ft from V for walls $f_{2^*} psi$ $\geq 60,000$	Wall with in-plane Minimum longitudinal ^{III} , p _e 0.0012	Minimu transverse 0.0020
Vc 3 Vm RFD soil 1666.27 Table 24.4.3.2 whrinkage an pross concret Reiaforcement ypp Defermed bars	7,969 0.075 0.0001 2.36 0.002665 0.002667 0.000625 0 3471.4 2 # in Toe @ 0 # in Toe @ - Minimum ra te d temperature te area	#4 @ 32" k-ft 4-#4 Reinf. Ratio Reinf. Ratio psf @ Wall in 'psf @ Toe 0.64 0.64 0.020	4 ft from Wall D ft from Wall med nt area to	ØVC As a ØMn Table 11.6	0.15 0.0002 4.05 0.001563 0 'psf @ Wal 0 'psf @ Hec 0 # in Toe @ 0 # in Toe @ 0 # in Toe @ 10 # in T	 #4 @ 16" u k-ft Reinf. Rat l interface ol.166666 ol.2: prcement Bar/wire size 	oc io 7 ft from V 5 ft from V for walls J _r , psi	Wall with in-plane Minimum longitudinal ^[1] , p _c	Minimutransverse
Vc 3 Wn RFD soil 1666.27 Table 24.4.3.2 thrinkage am pross concret Reinforcements Deformed bass	7,969 0.075 0.0001 2.36 0.8 0.002667 0.000625 0 3471.4 2 2 # in Toe @ 0 # in Toe @ 2-Minimum ra dtemperature te area ✓ _r psi M. < <60.000	#4 @ 32" k-ft 4.#4 Reinf. Ratio Reinf. Ratio psf @ Wall in 'psf @ Toe 0.64 (tos of deforr reinforcemen 0.020 0.020 0.021 0	4 ft from Wall D ft from Wall med nt area to	ØVC As a ØMn Table 11.6 wall type	0.15 0.0002 4.05 0.001563 0 psf @ Wal 0 'psf @ Her 0 # in Toe @ 0 # in Toe @ 0 # in Toe @ 17pe of seeprestressed reinforcement	 #4 @ 16" u k-ft Reinf. Rat l interface ol.166666 ol.2: prcement Bar/wire size 	io 7 ft from V 5 ft from V for walls $f_{2^*} psi$ $\geq 60,000$	Wall with in-plane Minimum longitudinal ^{III} , p _e 0.0012	Minimu transverse 0.0020
/c 3 Mn RFD soil 1666.27 Table 24.4.3.2 Infinkage an ross concet Reiaforcement ype Deformed bars	7,969 0.075 0.0001 2.36 0.8 0.0026667 0.000625 0 0.000625 0 3471.4 2 # in Toe @ 0 # in Toe @ 2 − Minimum ra d temperature te area	#4 @ 32" k-ft 4.#4 Reinf. Ratio Reinf. Ratio psf @ Wall in psf @ Toe 0.64 ttos of deforr reinforcemer 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0	4 ft from Wall D ft from Wall med nt area to	ØVC As a ØMn Table 11.6	0.15 0.0002 4.05 0.001563 0 psf @ Wal 0 'psf @ Her 0 # in Toe @ 0 # in Toe @ 0 # in Toe @ 1	#4 @ 16" of k-ft Reinf. Rat l interface 0.16666 0.0.2 orcement Bar/wire stee ≤ No. 5 ≤ No. 5 ≤ No. 5	io 7 ft from V 5 ft from V for walls f_{r} , psi $\geq 60,000$ < 60,000 Any	Mail with in-plane Innimum longitudinat ^[11] , p _c 0.0012 0.0015 0.0015	Minimu transverse 0.0020 0.0025 0.0025
/c 3 Mn RFD soil 1666.27 Table 24.4.3.2 Mr/inkage an arross concert Deformed bars Deformed bars	7,969 0.075 0.0001 2.36 0.8 0.002667 0.000625 0 3471.4 2 # in Toe @	#4 @ 32" k-ft 4.#4 Reinf. Ratio Reinf. Ratio psf @ Wall in psf @ Toe 0.64 ttos of deforr reinforcemer 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0	4 ft from Wall 0 ft from Wall med nt area to ment ratio $\times 60,000$ f_{2}	ØVC As a ØMn Table 11.6	0.15 0.0002 4.05 0.001563 0 psf @ Wal 0 'psf @ Hea 0 # in Toe @ 0 # in Toe @ in Toe @ 0 # in Toe	#4 @ 16" d k-ft Reinf. Rat l interface el 0.166666 0.2: orcement Bar/wire size ≤ No. 5	io 7 ft from V 5 ft from V for walls f_{r} psi $\geq 60,000$ < 60,000	Wall with in-plane Minimum longitudinal ^{III} , pr 0.0012 0.0015	Minimu transverse 0.0020 0.0025
/c 3 Mn RFD soil 1666.27 Table 24.4.3.2 Mr/inkage an arross concert Deformed bars Deformed bars	7,969 0.075 0.0001 2.36 0.8 0.002667 0.000625 0 3471.4 2 # in Toe @	#4 @ 32" k-ft 4.#4 Reinf. Ratio Reinf. Ratio psf @ Wall in psf @ Toe 0.64 ttos of deforr reinforcemer 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0	4 ft from Wall 0 ft from Wall med nt area to ment ratio $\times 60,000$ f_{2}	ØVC As a ØMn Table 11.6	0.15 0.0002 4.05 0.001563 0 psf @ Wal 0 'psf @ Her 0 # in Toe @ 0 # in Toe @ 0 # in Toe @ 1	#4 @ 16" of k-ft Reinf. Rat l interface 0.16666 0.0.2 orcement Bar/wire stee ≤ No. 5 ≤ No. 5 ≤ No. 5	io 7 ft from V 5 ft from V for walls f_{r} , psi $\geq 60,000$ < 60,000 Any	Mail with in-plane Innimum longitudinat ^[11] , p _c 0.0012 0.0015 0.0015	Minimu transverse 0.0020 0.0025 0.0025

 Precast^[1] Drinnovermin D51
 Precast^[2] Drinnovermin Any Any 0.0010
 retressed walk with an average effective compressive stress of at least 225 psi need not meet the requipability endotree p. ent for mini longitudinal reinforcement p.n. "In non-way treast, prestroads walls not wider than 12 ft and not mechanically connected to cause restraint in the transverse direc-tion, the minimum reinforcement requirement in the direction normal to the flexural reinforcement need not be satisfied.

4/26/20232:25 PM

Mithalia Retaining Wall UPDATED 3 ft

CANTILEVER RETAINING WALL EXTERNAL STABILITY
Imitations: uses Rankine coefficients for noncehesive soils, external moment at top of wall does not contribute to restoring moment (overturning only), no deflection or service load checks, soil on low side of wall does not brace wall against overturning (slding only)

imitations:		coefficients for none necks, soil on low si			inst overturning (sliding onl				
eference:		er, Design of Conc			680				
ile author:	S. Frech	last modified:	4/25/	2002					
SOIL DATA									
w	120	(pcf)	soil unit weight				Coeff. Frict		
phi del	35	(deg) (deg)	soil internal angle surface angle inc		Unit Weight 110-120	Int Friction 33-40	w. Conc 0.5-0.6		Soil
uei	0.35) (deg)	coeff. friction w/0		110-120	25-35	0.5-0.6		avel, no fines avel, w/ fines
	0.819		cosine(phi)	Jonoroto	110-120	23-30	0.3-0.4		d, high clay
	1.000		cosine(del)		100-120	25-35	0.2-0.4		or stiff clay
Ca	0.375	45 psf	coeff. of active p		90-110	20-25	0.2-0.3	Soft of	slay, silt
Ср	2.917	350 psf	coeff. of passive	pressure					
VALL GEOME	TRY					M			
H1	2.0833333	(ft)	soil retained			•••	¥ P1]	W4	
H2	0.5833333	(ft)	soil depth above	toe			11 .		
H3	0.8333333		footing thickness			T T			
H4	1.4166667		passive pressure	soil depth					
B1 B2	0.5 0.5	(ft) (ft)	wall width toe width						
B2 B3	0.5	(ft)	toe width heel width				W1	wз	
н	3.5	(ft)	total height			H1		1	
в	1.5	(ft)	total base						
	150	(pcf)	concrete unit we	ight					Р
	ADO				TOP O	E SOIL N	5	-	
EXTERNAL LO	0	(lb/ft)				+			
P _{applied}	56.888889				7	H2	' w	2 Y	
V _{applied}					н	4			
M _{applied}	85.333333 0				l	нз			
Surcharge	0	(psf)			1		2 B1	вз _	
OAD CALCUL	ATIONS								
	l soil force a	nd overturning	moment					hundun	h'= <u>s</u>
H _{prime}	0.00		converted surcha					AR	-
Ŷ	1.13		distance to soil lo						
Р	270		soil load resultan			<u>**</u> *		∎т	
	85.333333		Mo, soil + surcha Mo, external load		P76				
	41		total overturning			Count		$C_{ab}w(h+h')$	
			-			-401			
		toring forces			$y = \frac{h}{3}$		y =	$\frac{h^2 + 3hh'}{3(h+2h')}$	
component v1 (concrete)	weight (#) 200	arm (ft) 0 0.75	moment (#-f	150	p-1	Can wh ²	ρ =	$\frac{1}{2}C_{a,h}$ wh $(h+2h')$	
v2 (concrete)	188			141	/ · · 2	cahwn-	, -	2 0 2 1 1 1 1 1 1 1 1 1 1	
v3 (heel soil)	160			200					
v4 (surcharge)		0 1.25		0		"+ P			
/5 (toe soil)	3			9		+03+14	a	=(at-6a) - R	
applied		0.75		0	I	-41-141	州四寺 。	=16x7-2x) - Hy	
ert. force	583	3 momer	nt	499	t.	سيالالزال	-، پر درر «.	= $(q_{\ell} - h_{\ell} a_{\ell}^{2})_{1^{2}}^{R_{p}}$ = $(b_{\ell} - 2\ell) \frac{N_{p}}{\ell^{2}}$ en $a = \frac{\ell}{2}, q_{1} + q_{2} + \frac{R_{p}}{\ell}$	
	lateral slic	ling resistance	9		1e) Resultant in m	idale third	en m. 5 41 45 1	
	35	1 (lb)	passive pressure	sliding resistar	nce	r=7			
	204		soil friction force			/"			
	55	5 (lb)	total sliding resis	tance		- #3th		$g = \frac{2R_e}{2R_e}$	
					q		÷		
STABILITY FA	CTOR OF SA	FETY CHECKS	6			r) Resultant out:	ade modelle third		
	1		F.S. overturning						
verturning	1.22	2 OK	F.S. sliding Mr / Mo		0 0.15 0.3	0.45 0.6	0.75	0.9 1.05 1.2	1.35 1.5
liding	1.6		(PP+F)/(Ph+V)		°	/			
					-500 •	/			
SOIL BEARING									
а	0.15 0.50' to 1.00		distance to resul middle third of fo		-1000 -				
q1	259		bearing pressure		-1500 -				
q2	N.A		bearing pressure		-1500				
				-	-2000		BE	ARING PRESS	IIRE
ACTORED (1.							DL	(psf)	OILL
	2.666666		H1 + H2 line of action (ab	ove bore)	-2500				
	160		P (arm only)	ove base)					
	160		Ph (arm only)		-3000				
	0.4	4 (kip-ft)	Mu (arm momen	t)					
ACTORED (1.	.7) FOOTING 0.3		Mu @ Toe (Bot F	Reinfl					
	0.0		Mu @ Heel (Bot						
	0.99		Vu @ Toe						
	0.00		Vu @ Heel						
ooting				Wall					
ðVc	7,969	10" thick		ØVc	4,554	6" thick			
\s	0.075	#4 @ 32"		As	0.15	#4 @ 16"	oc		
1 0.1	0.0001	_		a	0.0002	-			
ðMn	2.36	k-ft		ØMn	4.05	k-ft Roinf Rot	io		
	0.4	4 2-#4 2 Reinf. Ratio			0.001563	Reinf. Rat	iu ii		
		5 Reinf. Ratio							
DED "			h						
RFD soil) psf @ Wall in 7 'psf @ Toe	terrace		0 psf @ Wa 0 'psf @ He				
	-+0+.	- Po. @ 100			0 P31 (@ H8				
991.057	'5 # in Toe @	0.	3 ft from Wall		0 # in Toe @	0.16666	7 ft from V	Vall	
	0 # in Toe @	2	0 ft from Wall		0 # in Toe @	0.2	5 ft from V	Vall	
		ratios of defor		Table 11.6	6.1—Minimum reinfe	orcement	for walls	with in-plane	$V_u \leq 0.5 \phi V$
		e reinforceme	nt area to		Type of nonprestressed	Bar/wire		Minimum	Minim
gross concret Reinforcement	te area			Wall type	reinforcement	size	f ₂ , psi	longitudinal ^[1] , p _l	transvers
Reinforcement type	f _r , psi	Minimum reinforce	ment ratio	1		< N- 6	$\geq 60,000$	0.0012	0.002
Deformed bars	< 60,000	0.0020		Cast-in-	Deformed bars	≤ No. 5	< 60,000	0.0015	0.002
Deformed bars			×60,000	place		> No. 5		0.0015	0.002
		reater	ſ,	1		~ NO. 5	Any	0.0015	0.002
or welded wire reinforcement		of:			Waldad	< W21			
or welded wire reinforcement			0014		Welded-wire reinforcement Deformed bars	≤ W31 or D31	Any	0.0012	0.0020

Precast^[2]

sed walls with an average effective for the formed bars or welded-wire reinforcement sed walls with an average effective for the force of the force Any e stress of at least 225 psi the rec tongmunar remote entert pp. "In non-way process, prostrossed walls not wider than 12 ft and not mechanically connected to cause restraint in the transverse direc-tion, the minimum reinforcement requirement in the direction normal to the flexural reinforcement need not be satisfied.

Any

0.0010

0.0010